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The development of SiC wafers with properties suitable for electronic device fabrication is now

well established commercially. A critical issue for developing metal–oxide–semiconductor field

effect transistor devices of SiC is the choice of dielectric materials for surface passivation and

insulating coatings. Although SiO2 grown thermally on SiC is a possibility for the gate dielectric,

this system has a number of problems related to the higher band gap of SiC, which energetically

favors more interface states than for SiO2 on Si, and the low dielectric constant of SiO2 leading to

2.5� higher electric fields across the oxide than in the surface of SiC, and to a premature

breakdown at the higher fields and higher temperatures that SiC devices are designed to operate

under. As a replacement for SiO2, amorphous Al2O3 thin film coatings have some strong advocates,

both for n- and p-type SiC, due to the value of its band gap and the position of its band edges with

respect to the band edges of the underlying semiconductor, a number of other material properties,

and not the least due to the advances of the atomic-layer-deposition process. Exploring the fact that

the chemical bonding of Al2O3 is the strongest among the oxides and therefore stronger than in

SiO2, the authors have previously shown how to form an Al2O3 film on Si (111) and Si (100), by

simply depositing a few atomic layers of Al on top of an ultrathin (0.8 nm) SiO2 film previously

grown on Si surfaces [Si (111) and Si (100)] and heating this system up to around 600 �C (all in

ultrahigh vacuum). This converts all the SiO2 into a uniform layer of Al2O3 with an atomically

sharp interface between the Al2O3 and the Si surface. In the present work, the same procedures are

applied to form Al2O3 on a SiC film grown on top of Si (111). The results indicate that a similar

process, resulting in a uniform layer of 1–2 nm of Al2O3 with an atomically sharp Al2O3/SiC

interface, also works in this case. VC 2016 American Vacuum Society.

[http://dx.doi.org/10.1116/1.4972774]

I. INTRODUCTION

The industrial use of SiC for semiconductor devices is

today mostly based on epitaxial wafers of 4H-SiC on SiC. A

challenge is the realization of SiC MOSFETs (Ref. 1) with

sufficiently high electron mobilities. In the present work,

thin films of 3C-SiC on Si are used because they are readily

available with the present techniques, using the lowest

growth temperatures, but the results obtained should be

transferable to other types of SiC. There are, however, ear-

lier reports about the use of 3C-SiC/Si MOSFETs at high

temperatures.2 In this reference, operation at up to 400 �C of

this MOSFET was achieved. It was fabricated with an n-type

SiC layer grown epitaxially on a Si substrate.

The aim of the present study was to investigate an easy

and reproducible method for depositing a thin (1–2 nm) film

of amorphous Al2O3 with an atomically sharp Al2O3/SiC

interface on the surface of 3C-SiC on Si, by adopting proce-

dures already proven successful for the similar process with

Si (111) and Si (100). The advantages of the use of Al2O3 as

a dielectric on SiC has been discussed and studied by

Wolborski et al.3 and in Ref. 1, where the preferred method

of deposition was the atomic layer deposition (ALD)

method. For the use of this method, various pretreatments of

the SiC surface are necessary (see Ref. 1) and some post-

treatments like annealing at lower (150 �C)3 or at relatively

high temperatures (800 �C)1 have also been tried to reduce

the accumulation of negative charges in the oxide. However,

some of these procedures may act to crystallize the Al2O3,

which would lower the barrier for charge tunneling through

the oxide. To avoid some of the problems described in these

a)Author to whom correspondence should be addressed; electronic mail:

permorgen@sdu.dk
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Refs. 1 and 3 with impurities and initial surface cleaning, the

present studies are conducted under ultrahigh vacuum

(UHV) conditions, to minimize surface contamination prob-

lems. A simpler approach to the deposition of Al2O3 than

with conventional ALD is also used, based on the advantages

of the UHV environment. This environment, with proper

analytical equipment installed, also allows for in situ photo-

emission with synchrotron radiation studies during the reac-

tions, for optimized surface sensitivity and spectral

resolution. The fresh SiC surfaces are produced in UHV

shortly before the reaction steps described in the following.

Thin layers of epi-3C (polycrystalline)-SiC may be grown

directly on a clean Si surface with a microwave-excited CH4

plasma interacting with hot Si surfaces in UHV.4 In analogy

with previous findings for Si, an ultrathin Si-oxide layer may

be grown on top of the SiC surface, with a thickness of

around 1 nm, by thermal oxidation. This reaction works as a

self-limiting growth process, at a relatively low oxygen pres-

sure, and at a temperature of 800 �C of the SiC/Si sample.

On top of this layer, after cooling down to room temperature,

1 nm of Al is now deposited from a Al-wire suspended in a

hot W-wire loop, with the thickness monitored by a quartz

crystal microbalance. This system, with an Al layer on top of

the SiO2 is then quickly heated to 530 �C and further up in

temperature in small steps. To follow and characterize the

processes occurring after all steps as described above, we

monitored the surface-, interface-, and substrate properties

using synchrotron radiation induced core level photoemis-

sion at ASTRID, Aarhus, Denmark.

We found a similar outcome for this procedure, as for Si,5

i.e., spectroscopic signs of an atomically sharp interface

between Al2O3 and SiC. Several steps in this reaction

scheme offer self-limiting behaviors, i.e., the growth of SiC

on Si, the oxidation to create SiO2, and the conversion into

Al2O3, which only needs a sufficient amount of Al to affect

the total conversion of the SiO2, while excess Al will leave

the system at sufficiently elevated temperatures. Thus, all

steps ultimately qualify as examples of self-limiting, genuine

atomic layer deposition processes.

II. EXPERIMENT

In this work, there have been three different processes of

interest, and experimentally, there has been a constructive

interplay between suitable facilities.

The first topic is the possibility to form epitaxial 3C-SiC

films on Si (111) and Si (100) surfaces using a beam of a

microwave excited CH4 plasma. Early results of this work

have been described in Ref. 4, and the work has later been

extended in Refs. 5 and 6. In summary, these studies have

shown that the growth of 3C-SiC on Si (111) and Si (100) is

possible at a relatively low substrate temperature (above

500 �C) from exposure to a CH4 plasma excited with micro-

waves. The build-up of the SiC layer follows the same kinet-

ics as for oxidation and nitridation of Si, as described by a

Hill’s function,6 implying initial 2D-island partial coverage

of SiCx entities and later a coalescence of the islands into a

uniformly covering layer with SiC composition in the form

of covalently bonded SiC4-units, and finally a vertical

growth increasing the layer thickness. The optimal growth

conditions for forming the polycrystalline epitaxial system

with as few pin-holes as possible and otherwise uniform film

thickness were established to be at a substrate temperature of

700 �C, and with suitable plasma parameters. A slightly bet-

ter procedure consisted of varying the growth temperature

from 500 �C in steps up to 900 �C, and varying the duration

of the CH4 plasma exposures correspondingly in order to

increase the thickness of the SiC layer, as monitored with

x-ray induced photoemission (XPS). The thickness of the

resulting SiC layers of the present study, made at 700 �C,

were estimated from the pit depths in the AFM scans of sam-

ples prepared in another UHV system6 to be around 3 nm,

thus thick enough to completely mask the Si 2p component

from the substrate at the conditions used for the studies with

synchrotron radiation at the ASTRID facility.

The second topic studied was the thermal oxidation of

SiC with neutral molecular oxygen. Previously, we have

explored how to grow a 0.8 nm thick Si-oxide with a high

quality and optimal interface (and MOS) properties [both on

Si (111) and on Si (100) surfaces] on clean Si surfaces in

UHV at 600–700 �C and relatively low oxygen pressures.7

This procedure is self-limiting, which means that the oxide

formation process saturates after a certain oxygen exposure

(around 600 L). [1 L (Langmuir)¼ 1.33� 10�4 Pa� s.] It

was recently shown that this method of oxide growth results

in flat bands on the Si (111) surface,8 and later TEM studies

have shown that the oxide is of uniform thickness across the

surface (unpublished results). Similar studies of the oxida-

tion of SiC have been carried out6 with the result that a self-

limiting, approximately 1 nm thick oxide consisting of SiO2,

forms on SiC at 700–800 C, still under UHV background

conditions (at 10�3 Pa oxygen partial pressure), but at much

higher total exposures of oxygen (6000 L) than for the Si sur-

faces. The morphology and uniformity of this system has not

yet been studied, except what can be deduced about this

from the photoemission studies.

The final topic of interest here, and the central part of this

report, is the deposition of Al on top of the SiO2/SiC/Si sys-

tem and its conformal conversion to Al-oxide by a thermal

treatment. This process has earlier been used for converting

SiO2 on Si to Al2O3 on Si, and the idea behind this was

based on the almost a factor of two higher heat of formation

for Al2O3 than for SiO2, which was believed to be a driving

force for the conversion. For these studies, we used a UHV

system with surface analysis equipment at the ASTRID stor-

age ring facilities at Aarhus University, Denmark. This gives

access to the use of photoemission with high resolution and

optimal surface sensitivity by being able to change the pho-

ton energy and the resolution/sensitivity of the spectrometer.

A. Experimental facilities

For the initial studies of the plasma processing and oxida-

tion steps, a traditional UHV system (SPECS) installed in

our laboratories in Odense, Denmark, was used with facili-

ties for surface reaction studies and surface analyses with
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XPS, low energy electron diffraction (LEED), ultraviolet

photoelectron spectroscopy, and Auger electron spectros-

copy. A AFM in air, a scanning electron microscope, and

x-ray diffraction facilities were also used.4,6 The sample hol-

der was transferable with built in electrical connectors,

which could enable us to heat Si by resistance heating, and

the temperature was monitored with a spot photometric

detector from outside the vacuum system. This detector was

calibrated for Si and transmission through the windows. The

Si crystals used in this study were cut from 1 mm thick

n-type Si (111) wafers from TOPSIL, Denmark, with a dop-

ing corresponding to a 5 X� cm resistivity, in the form of

2.5 by 1 cm rectangular pieces.

For the work at the synchrotron, the same type of Si sam-

ples, sample heating method, and photometer were used, but

the UHV system at the beam line in this case had to be baked

after inserting the sample. Thus, the Si sample also in this

case had to be cleaned before the experiments started. This

was done by ohmic heating of the sample to above 1000 �C,

and the cleanliness was verified with LEED and recording of

the Si 2p spectral region in photoemission. For measuring

the changes in the Si environment with Si 2p core level pho-

toemission, a photon energy of 130 eV was chosen. At this

photon energy, the kinetic energies of the Si 2p spectral

details are around 30 eV, which is at the minimum of the

penetration depth of electrons emitted from Si.9 The spectral

information for Si (in the Si 2p spectral range) is thus at a

maximum sensitivity of the surface features with photoemit-

ted electrons. The beam line was equipped with a spherical

grating monochromator with three different gratings for dif-

ferent energy ranges. The spectrometer is a hemispherical

SCIENTA analyzer with a radius of curvature of 20 cm and

a position sensitive detector system at the exit. The spec-

trometer operates at a fixed pass energy of the hemispheres,

which defines the spectrometer resolution, while the electron

energy is scanned with a retarding lens system at the

entrance to the spectrometer. The choice of photon energies

for the different spectra, and the energy resolution, is

explained later in the text. However, it should be mentioned

here that as a result of choosing photon energies in the range

where the kinetic energies of emitted electrons produce a

high surface sensitivity, the electron distribution emitted

from the sample is close to the secondary electron maxi-

mum. This gives an effect of a background in all spectra

shown here, which increases linearly toward lower kinetic

energies, or, equivalently (see later) to higher binding ener-

gies. The electron current in the storage ring of ASTRID typ-

ically varies between 140 and 180 mA, with a lifetime of

over 30 h, allowing for extended experimentation without

significant changes of the experimental conditions. (A new

storage ring, ASTRID 2, is now operating with a continuous

circulating electron current in the ring.)

III. EXPERIMENTAL DETAILS AND RESULTS

After cleaning of the Si (111) sample, the Si 2p spectrum

marked Si (111) in Fig. 1 was obtained. Immediately after

recording this spectrum, a thin layer of SiC was formed on

the surface by exposing the Si sample to a plasma of meth-

ane for 30 min at a temperature of 700 �C of the Si sample.

The methane plasma was excited with a microwave cav-

ity placed around a glass tubing system with a pressure dif-

ferential between the plasma source and the UHV system.4

This plasma system is focusing the plasma on the sample as

shown in Ref. 4. The Si 2p region was afterward recorded at

a photon energy of 130 eV. The results are shown in Fig. 1

as raw data [marked SiC/Si (111)] and analyzed in more

detail in Fig. 2. The spectrometer measures the kinetic

energy, EKinetic, of the photoemitted electrons. These ener-

gies are converted into binding energies with respect to the

Fermi level, EBinding, with the formula: EBinding ¼ EPhoton

�EKinetic � uSample. The photon energy, EPhoton, is deter-

mined from the calibration of the monochromator, and the

value of uSample, given in the formula above as the work

function of the sample, is actually treated as a parameter

which is adjusted in the spectrometer calibration to give the

correct binding energies, through corrections for the differ-

ence in work functions between the spectrometer and the

sample, which are in galvanic contact. This correction is

therefore necessary because the kinetic energies measured in

the spectrometer are influenced by the work function of the

spectrometer. In all the spectra shown in this work, this con-

vention for the value of the binding energy is strictly fol-

lowed without any corrections for shifts due to charging.

Because the layers on top of Si are very thin, no charging is

expected. In Figs. 1 and 2(a), the Si 2p spectrum of the SiC

surface layer shows the complete coverage of the Si sub-

strate by SiC. In this spectrum, it is possible to resolve two

peaks with the Si 2p spin-orbit splitting of 0.60 eV. For the

oxidized sample [Fig. 2(b)] the spin-orbit splitting cannot be

resolved, but the spectral shape obtained with a fit of two

peaks at the expected experimental resolution of 0.2 eV

clearly indicates two peaks with nearly equal intensities,

from Si-C at 101.2 eV and Si-O species at 102.7 eV, respec-

tively, indicating that the oxide layer is thinner than the SiC

layer. All fits are done using the CASAXPS software.10 The

FIG. 1. (Color online) Normalized raw Si 2p spectra of a Si (111) surface

(red dots), before and after microwave excited CH4 plasma exposure [SiC/Si

(111)], and after oxidation [SiO2/SiC/Si (111)], at a photon energy of

130 eV. The spectra were normalized to the photon flux. The energy resolu-

tion in the spectra is 0.2 eV, using an analyzer pass energy of 20 eV and 50

lm slits placed before and after the monochromator, defining the energy

width of the synchrotron radiation incident on the sample. The spectra are

sampled at 0.02 eV intervals. The Si (111) 2p3/2 peak is at 98.8 eV.

01B142-3 Silva et al.: Growth of aluminum oxide on silicon carbide 01B142-3
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binding energy observed for Si 2p (101.2 eV) in SiC closely

matches reported values as in Ref. 11, of 101.3 eV.

A C 1s spectrum after the creation of the SiC layer with

the plasma exposure is seen in Fig. 3. It was recorded with

photons of 350 eV energy, to obtain kinetic energies in the

range around 65 eV for optimal surface sensitivity and for

optimal transmission of the monochromator. It shows two

peaks at a rather low and noisy intensity, which is due to the

low thickness of the SiC layer, the lower photoemission

cross section (than for Si 2p at 130 eV photon energy) at this

energy, and a low photon flux from the monochromator. In

addition to these effects, the spectra show an increasing

background toward lower kinetic energies (higher binding

energies) in the spectra as explained above. The peak at

284.7 eV is assumed due to C–Si bonds while the peak at

286.0 eV is due to C–C bonds from a layer of unreacted C on

top of the SiC. The value for the C–Si bonds in this case

could seem to deviate somewhat from the value reported in

Ref. 11 of 283.8 eV, while the value for the C–C bonds is

identical to the value reported in Ref. 11. The difference for

the C–Si bond energy may be due to a difference in the

bonding at the surface of the 3C-SiC as compared to the

6H-SiC of Ref. 11, or due to the relatively noisy quality of

the present data. It is therefore safe to assume that the C 1s

peak observed here at 284.7 eV actually represents the C–Si

bonds.

As the next step, the SiC/Si (111) system was exposed to

oxygen inside the UHV system (at 2 � 10�4 Pa partial pres-

sure). To monitor the reaction of oxygen O 2s spectra were

recorded. For these spectra, a photon energy of 60 eV was

used, again to render the kinetic energies around the O 2s

emission optimally surface sensitive, at around 40 eV kinetic

energy. With the beamline used, it was not possible to obtain

a proper O 1s signal. The optimal temperature for the oxida-

tion had earlier6 been determined to be around 800 �C. At

this temperature, the saturating oxygen exposure was of the

order of 6000 L, which is much higher than for the corre-

sponding process for Si (111) or Si (100) (around 600 L).7

The O 2s spectrum of the sample is shown in Fig. 4 [SiO2/

SiC/Si (111)] after saturation of the oxygen signal from this

procedure, i.e., from SiO2 on top of SiC.

The Si 2p spectrum of this situation after the oxidation

was shown in Figs. 1 and 2. The third O 2s spectrum

included in Fig. 4 [Al/SiO2/Si (111)] relates to the deposition

of Al on top of the structure, and will be discussed later.

The C 1s spectrum (not shown) of the oxidized SiC sur-

face contains a (C-Si) peak at 284.3 eV and a very weak and

FIG. 2. (Color online) Analysis of the components of the spectra of Fig. 1 in terms of Gaussian–Lorentzian peaks with a linear background. (a) The Si 2p spec-

trum of the SiC/Si (111) sample with Si spin-orbit decomposition (Si 2p3/2 at 101.2 eV; Si 2p1/2 at 101.8 eV); (b) The Si 2p spectrum of the SiO2/SiC/Si (111)

sample shows a presence of two peaks with nearly equal intensities, from Si-C (101.2 eV) and Si-O species (102.7 eV), respectively, also indicating that the

oxide layer is thinner than the SiC layer. All fits are done using the CASAXPS software (Ref. 10).

FIG. 3. (Color online) C 1s region of the SiC/Si (111) sample, recorded with

a photon energy of 350 eV. The deconvoluted solid curves are a fit of two

combined Gaussian–Lorentzian peaks to the experimental points (dots),

with maxima at 284.7 eV (C-Si) and 286 eV (C-C). The energy resolution

(FWHM) in these spectra is 0.5 eV (40 eV pass energy; 100 lm slits).

FIG. 4. (Color online) Normalized O 2s spectra for three different samples

fitted with Gaussian–Lorentzian lineshapes. The pass energy was 75 eV and

the monochromator slits were 100 lm wide, giving a FWHM resolution of

0.8 eV. The fitted peak energies are 24.1 eV [Al2O3/SiC/Si (111)], 24.2 eV

[Al/SiO2/SiC/Si (111)] and 24.9 eV [SiO2/SiC/Si (111)].
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broad peak around 286 eV, which might be due to C–O

bonds in this case.

The Si 2p spectrum of SiC after oxidation [Fig. 1: SiO2/

SiC/Si (111)] shows a broadening toward higher binding

energies. In other studies of the oxidation of 4H-SiC, Si 2p

and C 1s spectra have been reported with sharper structures

relating to the different oxidation stages of Si through the

oxide. These oxides were produced in furnaces at much

higher temperatures and pressures.12 The position of the Si-

O peak in the present experiments coincides with the ener-

gies of the intermediate (Si2þ-Si3þ) oxidation states near the

interface for thicker oxides with well-defined bulk structures

(Si4þ) formed at a distance from the interface.12 Thus, the

thickness of the oxide layer produced here seems compara-

ble to a fraction of the thickness of the SiC layer, probably

of the order of 1 nm, judged roughly from the attenuation

of the Si-C Si 2p signal and the intensity of the Si 2p signal

of the Si-O features around 103 eV binding energy. The

sample now consists of an approximately 1 nm thick layer of

amorphous Si-oxide on top of a 3 nm layer of SiC, all on top

of Si (111).

A thin layer of Al (1 nm, gauged by a quartz crystal

monitor) is now deposited on this sample from a heated Al-

wire. The wire was suspended in a loop of W-wire, which

was heated by passing a current through it. The results of

this deposition for the Si and Al intensities are illustrated

in Fig. 5 [Al on the SiO2/SiC/Si (111)] for the raw Si 2p

signal, and in Figs. 6 and 7 for the Al 2p signal. Both sets

of spectra were recorded at 130 eV photon energy, with

nearly the same surface sensitivity for the signals of Si and

Al. The effect of the deposition of Al on the SiO2/SiC/Si

(111) sample is clearly seen in Fig. 8(a): When Al is depos-

ited on the top surface with oxide, it releases elemental Si

at the SiO2 surface, and masks the underlying SiC and

SiO2. We assume that the liberated Si evaporates under the

thermal treatments following, but it cannot be proved under

the present experimental conditions. Figure 8(b) shows the

result of the heat treatment of the system (see later).

The thickness of the Al layer has reduced the signal from

the SiO2 layer (see Fig. 1) by approximately a factor of 15

and now displays, along with the Si-Si peaks, two separate

Si 2p peaks from SiC and SiO2 with a weak Si 2p oxide

(Si2þþSi3þ) component at 103 eV, and the Si-C Si 2p com-

ponent at 101 eV binding energies [Fig. 8(a)].

The Al 2p spectrum (Figs. 6 and 7) shows the metallic

Al-Al (unreacted) component at 72.5 eV binding energy and

a broad oxide (Al-O) spectrum centered at 75 eV binding

energy. The Al 2p spectra are also recorded with 130 eV

energy photons, and with similar parameters as for the Si 2p

FIG. 5. (Color online) Normalized raw Si 2p spectra after Al-deposition: Al

on SiO2/SiC/Si (111) (lower spectrum, lower spectrum), and after annealing

of this sample (upper spectrum, upper spectrum): Al2O3 on SiC/Si (111),

recorded at a photon energy of 130 eV. Further analyses of these spectra are

shown in Fig. 8. The same resolution and sampling conditions were used as

in Fig. 1.

FIG. 6. (Color online) Normalized raw Al 2p spectra of Al deposited on

SiO2/SiC/Si (111) (black dots: with Al-Al indication) and after the sample

has been annealed (red crosses: Al2O3; see text). The conditions for record-

ing these spectra are the same as in Fig. 1.

FIG. 7. (Color online) Analyses of the spectra in Fig. 7. (a) Al on SiO2/SiC/Si (111); (b) Al2O3/SiC/Si (111) (only Al2O3 visible). The fitting of the spectra

shows individual components due to bonding differences. For the Al-Al part the Al 2p spin-orbit splitting is resolvable in (a), but this is not the case for the

other components in (a) or (b) at the present data quality.
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spectra. Thus, Al atoms in direct contact with O atoms and

Si atoms are observed from the deconvoluted spectra, in

addition to Al in contact with other Al atoms. The carbon C

1s spectra in this case have too little intensity to detect any

Al-C contacts.

The sample is now gradually heated at various tempera-

tures above 560 �C, which was the temperature for the onset

of the reaction between Al and SiO2 on Si, and a number of

times (in 1 min flashes) until the spectral changes had set-

tled, which finally occurred at 800 �C for a 2 min exposure.

The results are seen in Fig. 4 (for oxygen, O 2s) and Figs. 6

and 7 (for Al, Al 2p, crosses).

The spectra in Fig. 6 are also analyzed for details by fit-

ting with Gaussian–Lorentzian peaks. The results are shown

in Fig. 7.

These experiments and measurements indicate the com-

plete conversion of all Al to Al-oxide (Al 2p) and a shift of

the O 2s peak (from O in SiO2 to O in Al2O3, see Fig. 4). The

Si 2p spectra of the sample corresponding to this treatment

are included in Figs. 5 and 8. The [Al2O3 on SiC/Si (111)] Si

2p spectrum in Fig. 8 and the corresponding fitted spectrum

in Fig. 8(b) show evidence for the presence of Si-C bonds in

SiC (peak at 100.7 eV) and Si-Al contacts (small bulge at

99.3 eV, which is not Si-Si bonds from the Si substrate, due to

the total overlayer thickness), but no signs of Si–O bonds at the

same position as in the Al on SiO2/SiC/Si (111) Si 2p spectrum,

recorded before the thermal conversion. The Al 2p spectra do

not show signs of crystallization of Al2O3, when compared to

earlier experiments,5 despite the relatively high final tempera-

ture for the conversion reaction. In terms of intensities, the data

for O 2s indicate that all the oxygen from SiO2 goes into Al2O3

(see Fig. 4). The shift of the Si-C Si 2p peak from 101.2 to

100.7 eV after the processing may be due to a shift of the SiC

band edges at the oxide/SiC interface (band bending).

We therefore infer from all the results obtained in this

work that the same mechanism as for the reaction of Al with

SiO2 on Si surfaces may be explored for the formation of an

atomically sharp interface between Al2O3 and the 3C-SiC sur-

face, based on the intermediate deposition of a sacrificial SiO2

layer on SiC. The thin oxide films studied here are typically

denominated as SiO2 and Al2O3 in the text and figures,

although previous studies have identified that the average

coordination in these thin layers differs from typical bulk

stoichiometry, due to the various stages or degrees of oxida-

tion from the interface and upward into the layers.8,12 We

have not measured the morphology of the present system, but

for the SiO2/Si interface with the self-limiting oxidation pro-

cess, we have earlier obtained a uniform layer covering all the

surface area, as observed with TEM studies (unpublished). It

is therefore assumed that this structure will also not be signifi-

cantly changed in the present case, after the reaction with Al.

IV. SUMMARY AND CONCLUSIONS

We have with this work demonstrated a very simple and

reproducible procedure for the formation of a thin (approxi-

mately 1–2 nm thick) film of Al2O3 on SiC with an atomically

sharp oxide/semiconductor interface. A sacrificial thin layer

(about 1 nm) of SiO2 was first formed on SiC upon which a

suitable amount of Al was deposited afterward and then

heated to complete a reaction in which all the SiO2 gets con-

verted to Al2O3. Most of this study was conducted with the

core level photoemission excited with synchrotron radiation,

for high resolution and optimal surface sensitivity. To comply

with this method, very thin layers were used throughout, and

the oxides remain amorphous. This has the effect that spectral

details are less distinct, due to relatively low count rates, than

in earlier reports for thicker oxides and crystalline SiC sub-

strates and in experiments using conventional XPS and photo-

emission with synchrotron radiation. Still, based on the

relatively extensive and combined spectral information

obtained here and in previous studies with XPS, we find

strong evidence for having obtained the objective, i.e., forma-

tion of an atomically sharp Al2O3/SiC interface, which should

be interesting to test electrically. Thus, the adoption of this

procedure, with a maximum reaction temperature of 800 �C,

could be an alternative to conventional ALD without the same

needs for pre- and postprocessing for depositing ultrathin

Al2O3 layers on SiC as a high quality gate dielectric for future

commercial planar SiC-MOS devices, and for other types and

geometries of SiC-based devices.
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FIG. 8. (Color online) Analysis of the spectra in Fig. 5 by deconvolution. (a) Al on SiO2/SiC/Si (111), un-normalized; (b) Al2O3/SiC/Si (111), after thermal

reaction of the sample in (a). Fitted peaks at 99.3 (Si-Al) and 100.7 eV (Si-C).
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