158 research outputs found

    Advancing Agro-Based Research

    Get PDF
    Taking the next sums up Universiti Putra Malaysia (UPM) approach to research. The university now aims to create an environment that inspires innovative research following its selection as a research university by the Higher Education Ministry in November 2006

    CLEC16A variants conferred a decreased risk to allergic rhinitis in the Chinese population

    Get PDF
    Background: Allergic rhinitis (AR) is a chronic respiratory disease. Hereditary factors played a key role in the pathogenesis of the AR. This study investigated the association between CLEC16A variants and AR risk in the Chinese population.Methods: We applied Agena MassARRAY technology platform to genotype five single nucleotide polymorphisms (SNPs) located in CLEC16A in 1004 controls and 995 cases. The association between CLEC16A SNPs (rs2286973, rs887864, rs12935657, rs11645657 and rs36045143) and AR risk were calculated by logistic regression analysis, with odds ratio (OR) and 95% confidence interval (CI). False-positive report probability (FPRP) was also used to assess the significant results to reduce false positives. Multifactor dimensionality reduction (MDR) was completed to assess the interaction between CLEC16A variants to predict AR risk.Results: Totally, CLEC16A (rs887864, rs12935657, rs2286973, rs11645657 and rs36045143) were significantly associated with AR risk. Therein, rs2286973, rs11645657 and rs36045143 were related to a decreased risk of AR in the people ≤ 43 years old, females and the people with BMI≤24, respectively. And rs887864 and rs12935657 were also associated with a decreased susceptibility of AR in the people >43 years old. Meanwhile, in the results of region stratification, rs887864 conferred a reduced risk to AR in the people from loess hilly area.Conclusion:CLEC16A variants conferred a decreased risk to AR in the Chinese population

    Genetic dissection of grain iron concentration in hexaploid wheat (Triticum aestivum L.) using a genome-wide association analysis method

    Get PDF
    Iron (Fe) is an essential micronutrient of the body. Low concentrations of bioavailable Fe in staple food result in micronutrient malnutrition. Wheat (Triticum aestivum L.) is the most important global food crop and thus has become an important source of iron for people. Breeding nutritious wheat with high grain-Fe content has become an effective means of alleviating malnutrition. Understanding the genetic basis of micronutrient concentration in wheat grains may provide useful information for breeding for high Fe varieties through marker-assisted selection (MAS). Hence, in the present study, genome-wide association studies (GWAS) were conducted for grain Fe. An association panel of 207 accessions was genotyped using a 660K SNP array and phenotyped for grain Fe content at three locations. The genotypic and phenotypic data obtained thus were used for GWAS. A total of 911 SNPs were significantly associated with grain Fe concentrations. These SNPs were distributed on all 21 wheat chromosomes, and each SNP explained 5.79–25.31% of the phenotypic variations. Notably, the two significant SNPs (AX-108912427 and AX-94729264) not only have a more significant effect on grain Fe concentration but also have the reliability under the different environments. Furthermore, candidate genes potentially associated with grain Fe concentration were predicted, and 10 candidate genes were identified. These candidate genes were related to transport, translocation, remobilization, and accumulationof ironin wheat plants. These findings will not only help in better understanding the molecular basis of Fe accumulation in grains, but also provide elite wheat germplasms to develop Fe-rich wheat varieties through breeding

    Emissive Platinum(II) Cages with Reverse Fluorescence Resonance Energy Transfer for Multiple Sensing

    Get PDF
    It is quite challenging to realize fluorescence resonance energy transfer (FRET) between two chromophores with specific positions and directions. Herein, through the self-assembly of two carefully selected fluorescent ligands via metal-coordination interactions, we prepared two tetragonal prismatic platinum(II) cages with a reverse FRET process between their faces and pillars. Bearing different responses to external stimuli, these two emissive ligands are able to tune the FRET process, thus making the cages sensitive to solvents, pressure, and temperature. First, these cages could distinguish structurally similar alcohols such as n-butanol, t-butanol, and i-butanol. Furthermore, they showed decreased emission with bathochromic shifts under high pressure. Finally, they exhibited a remarkable ratiometric response to temperature over a wide range (223–353 K) with high sensitivity. For example, by plotting the ratio of the maximum emission (I600/I480) of metallacage 4b against the temperature, the slope reaches 0.072, which is among the highest values for ratiometric fluorescent thermometers reported so far. This work not only offers a strategy to manipulate the FRET efficiency in emissive supramolecular coordination complexes but also paves the way for the future design and preparation of smart emissive materials with external stimuli responsiveness

    Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data.

    Get PDF
    Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the Drosophila embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the top 10 methods to a zebra fish embryo dataset yielded similar performance and statistical properties of the selected genes than in the Drosophila data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues

    Inhibition of P2X7 receptors improves outcomes after traumatic brain injury in rats

    Get PDF
    Traumatic brain injury (TBI) is the leading cause of death and disability for people under the age of 45 years worldwide. Neuropathology after TBI is the result of both the immediate impact injury and secondary injury mechanisms. Secondary injury is the result of cascade events, including glutamate excitotoxicity, calcium overloading, free radical generation, and neuroinflammation, ultimately leading to brain cell death. In this study, the P2X7 receptor (P2X7R) was detected predominately in microglia of the cerebral cortex and was up-regulated on microglial cells after TBI. The microglia transformed into amoeba-like and discharged many microvesicle (MV)-like particles in the injured and adjacent regions. A P2X7R antagonist (A804598) and an immune inhibitor (FTY720) reduced significantly the number of MV-like particles in the injured/adjacent regions and in cerebrospinal fluid, reduced the number of neurons undergoing apoptotic cell death, and increased the survival of neurons in the cerebral cortex injured and adjacent regions. Blockade of the P2X7R and FTY720 reduced interleukin-1βexpression, P38 phosphorylation, and glial activation in the cerebral cortex and improved neurobehavioral outcomes after TBI. These data indicate that MV-like particles discharged by microglia after TBI may be involved in the development of local inflammation and secondary nerve cell injury
    corecore