1,119 research outputs found

    Pricing Web Advertisement: Display Ads V.S. Contextual Ads

    Get PDF
    Most web sites provide display advertising and contextual advertising services simultaneously, which are the main ad formats in Internet. With multimedia format, the pricing of display ads is generally based on the occurrence of ad impressions. However, targeting their customers more accurately, contextual ads are performance based advertisements and are charged only if one visitor clicks a client’s appointed ad. In this paper, we develop an economic model to examine the pricing strategy, profitability, and social efficiency of these two heterogeneous web advertising channels, with respect to different market structures

    Integration of WiMAX and WiFi Services: Bandwidth Sharing and Channel Collaboration

    Get PDF
    and WiMAX networks; however, most of them either concentrate on the design of collaborated protocols or figure out the issue without the overall consideration of customer preference and contract design. In the present study, we consider a wireless service market in which there are two wireless service providers operating WiFi and WiMAX, respectively. One of the research dimensions given in the study is whether wireless operators implement bandwidth sharing, while the other is whether wireless operators make decisions independently or jointly. By involving customer preference and wholesale price contract in the present model, we find that bandwidth sharing would benefit a WiMAX service provider, yet a WiFi service provider has no significant saving under a wholesale price contract. In addition, the profit of a WiMAX service may increase with WiFi coverage when bandwidth sharing is implemented but decease with WiFi coverage when both wireless services operate without bandwidth sharing. Besides, the WiMAX service provider would allocate more capacity when average usage rate increases, but decrease the amount of capacity when average usage rate is too large

    Microbial Interactions in Biofilms: Impacts on Homeostasis and Pathogenesis

    Get PDF
    Microbes in nature or in the human body are predominantly associated with surfaces and living in biofilms. Species diversity, high cell density and close proximity of cells are typical of life in biofilms, where organisms interact with each other and develop complex interactions that can be either competitive or cooperative. Competition between species is a well-recognized ecological force to drive microbial metabolism, diversity and evolution. However, it was not until recently that microbial cooperative activities are also recognized to play important roles in microbial physiology and ecology. Importantly, these microbial interactions in biofilms profoundly affect their overall function, biomass, diversity and pathogenesis. It is now known that every human body contains a personalized microbiome that is essential to maintain host health. Remarkably, the indigenous species in most microbial communities often maintain a relatively stable and harmless relationship with the hosts despite regular exposure to minor environmental perturbations and host defence factors. Such stability or homeostasis results from a dynamic balance of microbial–microbial and microbial–host interactions. Under some circumstances, however, the homeostasis may breakdown, predisposing a site to diseases. The evidence has accumulated that such biofilm or community-based diseases can be prevented or treated not only by targeting putative pathogens, but also by interfering with the processes that drive breakdown of the homeostasis in biofilms

    Structural and functional insights into a quorum-sensing signal peptide receptor, the ComD histidine protein kinase of streptococcus mutans

    Get PDF
    Quorum sensing activation by signal peptide pheromones (SP) in Gram-positive bacteria depends on a membrane-associated histidine kinase receptor, which senses the signal and triggers the signaling cascade for various cell density-dependent activities. However, relatively little is known of peptide pheromone-receptor interactions in these bacteria, largely because of technical challenges in working with membrane-associated proteins in these bacteria. Recently, we have described a genetic approach and several analysis methods to studying membrane topology and structure-function interaction of a quorum sensing pheromone receptor ComD in a Gram-positive bacterium Streptococcus mutans. Using these methods, we confirm that the membrane-spanning domain of the ComD protein forms six transmembrane segments and three extracellular loops, loopA, loopB and loopC. By mutational analyses of these three extracellular loops, we demonstrate that both loopC and loopB are required for signal recognition and quorum sensing activation, while loopA plays little role in signal detection. In particular, a deletion or substitution mutation of four residues NVIP within loopC abolishes signal recognition for quorum sensing activation. Consistent with these findings, the loopC and loopB mutants are completely or partially defective in bacteriocin production. We conclude that both loopC and loopB are required to form the signal peptide receptor and the residues NVIP of loopC are essential for signal recognition and quorum sensing activation in S. mutans

    Building Cooperation in VoIP Network through a Reward Mechanism

    Get PDF
    In this paper, for solving the moral hazard problem of super nodes in VOIP network and achieving better communication quality, we establish a reward mechanism based on classical efficiency-wage models. In the reward mechanism, the function of reward is to encourage super nodes to contribute their bandwidth and cover their effort costs, whereas the function of fine is to prevent opportunistic super nodes from shirking. We consider that network quality and idle bandwidth are the essential criterions for selecting qualified super nodes. Once all super nodes can satisfy specific conditions, the required reward can be derived so as to improve the VoIP platform\u27s revenue. Moreover, we also suggest several targets both in technical and economic view that the platform provider can strive in order to boost his/her market share. In addition, the case of Skype is discussed in this study and we also examine its current pricing strategy

    Regulated proteolysis of the alternative sigma factor SigX in Streptococcus mutans: implication in the escape from competence

    Get PDF
    BACKGROUND: SigX (σ(X)), the alternative sigma factor of Streptococcus mutans, is the key regulator for transcriptional activation of late competence genes essential for taking up exogenous DNA. Recent studies reveal that adaptor protein MecA and the protease ClpC act as negative regulators of competence by a mechanism that involves MecA-mediated proteolysis of SigX by the ClpC in S. mutans. However, the molecular detail how MecA and ClpC negatively regulate competence in this species remains to be determined. Here, we provide evidence that adaptor protein MecA targets SigX for degradation by the protease complex ClpC/ClpP when S. mutans is grown in a complex medium. RESULTS: By analyzing the cellular levels of SigX, we demonstrate that the synthesis of SigX is transiently induced by competence-stimulating peptide (CSP), but the SigX is rapidly degraded during the escape from competence. A deletion of MecA, ClpC or ClpP results in the cellular accumulation of SigX and a prolonged competence state, while an overexpression of MecA enhances proteolysis of SigX and accelerates the escape from competence. In vitro protein-protein interaction assays confirm that MecA interacts with SigX via its N-terminal domain (NTD(1–82)) and with ClpC via its C-terminal domain (CTD(123–240)). Such an interaction mediates the formation of a ternary SigX-MecA-ClpC complex, triggering the ATP-dependent degradation of SigX in the presence of ClpP. A deletion of the N-terminal or C-terminal domain of MecA abolishes its binding to SigX or ClpC. We have also found that MecA-regulated proteolysis of SigX appears to be ineffective when S. mutans is grown in a chemically defined medium (CDM), suggesting the possibility that an unknown mechanism may be involved in negative regulation of MecA-mediated proteolysis of SigX under this condition. CONCLUSION: Adaptor protein MecA in S. mutans plays a crucial role in recognizing and targeting SigX for degradation by the protease ClpC/ClpP. Thus, MecA actually acts as an anti-sigma factor to regulate the stability of SigX during competence development

    Clinical and pathological correlates of severity classifications in trigger fingers based on computer-aided image analysis

    Get PDF
    BACKGROUND: The treatment of trigger finger so far has heavily relied on clinicians’ evaluations for the severity of patients’ symptoms and the functionality of affected fingers. However, there is still a lack of pathological evidence supporting the criteria of clinical evaluations. This study’s aim was to correlate clinical classification and pathological changes for trigger finger based on the tissue abnormality observed from microscopic images. METHODS: Tissue samples were acquired, and microscopic images were randomly selected and then graded by three pathologists and two physicians, respectively. Moreover, the acquired images were automatically analyzed to derive two quantitative parameters, the size ratio of the abnormal tissue region and the number ratio of the abnormal nuclei, which can reflect tissue abnormality caused by trigger finger. A self-developed image analysis system was used to avoid human subjectivity during the quantification process. Finally, correlations between the quantitative image parameters, pathological grading, and clinical severity classification were assessed. RESULTS: One-way ANOVA tests revealed significant correlations between the image quantification and pathological grading as well as between the image quantification and clinical severity classification. The Cohen’s kappa coefficient test also depicted good consistency between pathological grading and clinical severity classification. CONCLUSIONS: The criteria of clinical classification were found to be highly associated with the pathological changes of affected tissues. The correlations serve as explicit evidence supporting clinicians in making a treatment strategy of trigger finger. In addition, our proposed computer-aided image analysis system was considered to be a promising and objective approach to determining trigger finger severity at the microscopic level

    Power Loss Characteristics of a Sensing Element Based on a Polymer Optical Fiber under Cyclic Tensile Elongation

    Get PDF
    In this study, power losses in polymer optical fiber (POF) subjected to cyclic tensile loadings are studied experimentally. The parameters discussed are the cyclic load level and the number of cycles. The results indicate that the power loss in POF specimens increases with increasing load level or number of cycles. The power loss can reach as high as 18.3% after 100 cyclic loadings. Based on the experimental results, a linear equation is proposed to estimate the relationship between the power loss and the number of cycles. The difference between the estimated results and the experimental results is found to be less than 3%
    • 

    corecore