142 research outputs found

    Developing Nb-Si based ultra-high temperature materials in BIAM

    Get PDF
    Nb-Si based materials have the attractive characters such as of higher melting points(>1750℃), relatively lower densities(6.6-7.2g/cm2) and excellent high-temperature strength in comparison with Ni based superalloys, which are greatly potential to serve in the condition with the temperature range of 1200~1400℃ as a family of ultrahigh temperature structural materials to replace Ni base superalloy. However, , there are three challenges to the application of Nb-Si based materials, including the balance of mechanical properties, the manufacturing processing and the high temperature oxidation resistance. In Beijing Institute of Aeronautical Materials, the research about optimizing chemical composition, ultrahigh temperature heat-treatment and developing special manufacturing processing have been carried out. The results showed that the V and rare metal is able to increase the room temperature toughness of Nb-Si based materials. And the addition of Cr and V are beneficial to the oxidation resistance properties, which will decreased the average oxidation rate and the spallation of oxide scale. After heat-treated at 1600℃/20h, the microstructure of Nb-Si based Materials is finer and the rupture strength at room temperature and 700℃ were raised. With the directional solidification method (DS), the materials with directional solidified microstructures are obtained and with selected laser melting method (SLM), the materials with uniform fine microstructures. The maximum value of tensile strength at 1250℃ was ~190MPa at 0.2 mm/min solidification rate. The room temperature fracture toughness and ductile are improved by SLM. Especially, the ceramic shell for the investment casting of Nb-Si based materials are manufactured successfully, which service temperature is over 300℃ higher than the conventional ceramic shell for Ni-based superalloys. Based on the ceramic shell, the simulated turbine blades with fine microstructure and without inner defects have been prepared at 2000℃

    Solubility of CO2 in Ionic Liquids with Additional Water and Methanol: Modeling with PC-SAFT Equation of State

    Get PDF
    The superior properties of specific ionic liquids (ILs), such as negligible volatility, high thermal stability, flexible designability, and their affinity to capture CO2, make them an attractive alternative to chemical and physical solvents that are currently used in CO2 capture processes. However, a limitation to use ILs for industrial CO2 capture is their high viscosity compared to conventional solvents, which leads to a lower CO2 capture rate and higher pumping cost. The viscosity of ILs can be reduced by adding a co-solvent, such as water or methanol. In this work, solubility, vapor–liquid equilibria (VLE), and liquid–liquid equilibria (LLE) for binary and ternary mixtures involving CO2, ILs, water, and methanol have been systematically investigated by employing perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state with two different strategies. ILs were considered as self-associating chain molecules with two association sites in the first strategy. As a comparison, they were regarded as strong electrolytes that dissociate into anions and cations in the second strategy. It was found that both strategies provide accurate correlations in modeling CO2 solubilities in ILs and LLE of binary ILs/water systems. Four ternary systems were selected to verify the predictive capability of the two strategies. For water-containing systems, both strategies performed excellently when binary interaction parameters (BIPs) can be obtained by fitting to experimental data, while they performed poorly for system with few experimental data. For cases where methanol acted as a co-solvent, accurate predictions were obtained with both strategies, even without any BIPs. PC-SAFT was found to be a potential practical tool to develop CO2 capture processes with new alternative solvents when there are sufficient experimental data for binary mixtures

    Response of miR156-SPL Module during the Red Peel Coloration of Bagging-Treated Chinese Sand Pear (Pyrus pyrifolia Nakai)

    Get PDF
    MicroRNA156 is an evolutionarily highly conserved plant micro-RNA (miRNA) that controls an age-dependent flowering pathway. miR156 and its target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes regulate anthocyanin accumulation in plants, but it is unknown whether this process is affected by light. Red Chinese sand pear (Pyrus pyrifolia) fruits exhibit a unique coloration pattern in response to bagging treatments, which makes them appropriate for studying the molecular mechanism underlying light-induced anthocyanin accumulation in fruit. Based on high-throughput miRNA and degradome sequencing data, we determined that miR156 was expressed in pear fruit peels, and targeted four SPL genes. Light-responsive elements were detected in the promoter regions of the miR156a and miR156ba precursors. We identified 19 SPL genes using the “Suli” pear (Pyrus pyrifolia Chinese White Pear Group) genome database, of which seven members were putative miR156 targets. The upregulated expression of anthocyanin biosynthetic and regulatory genes and downregulated expression of PpSPL2, PpSPL5, PpSPL7, PpSPL9, PpSPL10, PpSPL13, PpSPL16, PpSPL17, and PpSPL18 were observed in pear fruits after bags were removed from plants during the anthocyanin accumulation period. Additionally, miR156a/ba/g/s/sa abundance increased after bags were removed. Yeast two-hybrid results suggested that PpMYB10, PpbHLH, and PpWD40 could form a protein complex, probably involved in anthocyanin biosynthesis. Additionally, PpSPL10 and PpSPL13 interacted with PpMYB10. The results obtained in this study are helpful in understanding the possible role of miR156 and its target PpSPL genes in regulating light-induced red peel coloration and anthocyanin accumulation in pear

    Ethyne Reducing Metal-Organic Frameworks to Control Fabrications of Core/shell Nanoparticles as Catalysts

    Get PDF
    An approach using cobalt metal-organic frameworks (Co-MOF) as precursors is established for the fabrication of cobalt nanoparticles in porous carbon shells (core/shell Co@C). Chemical vapor deposition of ethyne is used for controlling the reduction of cobalt nanoclusters in the MOF and the spontaneous formation of the porous carbon shells. The metallic cobalt cores formed are up to 4 - 6 nm with the crystal phase varying between hexagonally-close-packed (hcp) and face-centre-packed (fcc). The porous carbon shells change from amorphous to graphene with the ethyne deposition temperature increasing from 400 to 600 oC. The core/shell Co@C nanoparticles exhibit high catalytic activity in selectively converting syngas (CTY: 254.1 - 312.1 μmolCO·gCo-1·s-1) into hydrocarbons (4.0 - 5.2 gHC·g-cat-1·h-1) at 260 oC. As well as the crystal size and phase, the coordination numbers of the cobalt to oxygen and to other cobalt atoms on the surface of the cobalt nanoparticles, and the permeability of the porous carbon shell have been related to the catalytic performance in FTS reactions

    Copper cocatalyst modulated radical generation for selective heterogeneous photosynthesis of α‑haloketones

    Get PDF
    The α-haloketones are important precursors for synthetic chemistry and pharmaceutical applications; however, their production relies heavily on traditional synthetic methods via halogenation of ketones that are toxic and environmentally risky. Here, we report a heterogeneous photosynthetic strategy of α-haloketone production from aromatic olefins using copper-modified graphitic carbon nitride (Cu–C3N4) under mild reaction conditions. By employing NiX2 (X = Cl, Br) as the halogen source, a series of α-haloketones can be synthesized using atmospheric air as the oxidant under visible-light irradiation. In comparison with pristine carbon nitride, the addition of Cu as a cocatalyst provides a moderate generation rate of halogen radicals and selective reduction of molecular oxygen into •OOH radicals, thus leading to a high selectivity to α-haloketones. The Cu–C3N4 also exhibits high stability and versatility, rendering it a promising candidate for solar-driven synthetic applications

    Heterogeneous photocatalytic recycling of FeX2/FeX3 for efficient halogenation of C−H bonds using NaX

    Get PDF
    Environmental-friendly halogenation of C−H bonds using abundant, non-toxic halogen salts is in high demand in various chemical industries, yet the efficiency and selectivity of laboratory available protocols are far behind the conventional photolytic halogenation process which uses hazardous halogen sources. Here we report an FeX2 (X=Br, Cl) coupled semiconductor system for efficient, selective, and continuous photocatalytic halogenation using NaX as halogen source under mild conditions. Herein, FeX2 catalyzes the reduction of molecular oxygen and the consumption of generated oxygen radicals, thus boosting the generation of halogen radicals and elemental halogen for direct halogenation and indirect halogenation via the formation of FeX3. Recycling of FeX2 and FeX3 during the photocatalytic process enables the halogenation of a wide range of hydrocarbons in a continuous flow, rendering it a promising method for applications

    New insights into the activation and deactivation of Au/CeZrO4 in the low-temperature water-gas shift reaction

    Get PDF
    Gold (Au) on ceria–zirconia is one of the most active catalysts for the low-temperature water–gas shift reaction (LTS), a key stage of upgrading H2 reformate streams for fuel cells. However, this catalyst rapidly deactivates on-stream and the deactivation mechanism remains unclear. Using stop–start scanning transmission electron microscopy to follow the exact same area of the sample at different stages of the LTS reaction, as well as complementary X-ray photoelectron spectroscopy, we observed the activation and deactivation of the catalyst at various stages. During the heating of the catalyst to reaction temperature, we observed the formation of small Au nanoparticles (NPs; 1–2 nm) from subnanometer Au species. These NPs were then seen to agglomerate further over 48 h on-stream, and most rapidly in the first 5 h when the highest rate of deactivation was observed. These findings suggest that the primary deactivation process consists of the loss of active sites through the agglomeration and possible dewetting of Au NPs

    Photocatalytic abstraction of hydrogen atoms from water using hydroxylated graphitic carbon nitride for hydrogenative coupling reactions

    Get PDF
    Employing pure water, the ultimate green source of hydrogen donor to initiate chemical reactions that involve a hydrogen atom transfer (HAT) step is fascinating but challenging due to its large H−O bond dissociation energy (BDEH-O=5.1 eV). Many approaches have been explored to stimulate water for hydrogenative reactions, but the efficiency and productivity still require significant enhancement. Here, we show that the surface hydroxylated graphitic carbon nitride (gCN−OH) only requires 2.25 eV to activate H−O bonds in water, enabling abstraction of hydrogen atoms via dehydrogenation of pure water into hydrogen peroxide under visible light irradiation. The gCN−OH presents a stable catalytic performance for hydrogenative N−N coupling, pinacol-type coupling and dehalogenative C−C coupling, all with high yield and efficiency, even under solar radiation, featuring extensive impacts in using renewable energy for a cleaner process in dye, electronic, and pharmaceutical industries

    SVIP Induces Localization of p97/VCP to the Plasma and Lysosomal Membranes and Regulates Autophagy

    Get PDF
    The small p97/VCP-interacting protein (SVIP) functions as an inhibitor of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. Here we show that overexpression of SVIP in HeLa cells leads to localization of p97/VCP at the plasma membrane, intracellular foci and juxtanuclear vacuoles. The p97/VCP-positive vacuolar structures colocalized or associated with LC3 and lamp1, suggesting that SVIP may regulate autophagy. In support of this possibility, knockdown of SVIP diminished, whereas overexpression of SVIP enhanced LC3 lipidation. Surprisingly, knockdown of SVIP reduced the levels of p62 protein at least partially through downregulation of its mRNA, which was accompanied by a decrease in starvation-induced formation of p62 bodies. Overexpression of SVIP, on the other hand, increased the levels of p62 protein and enhanced starvation-activated autophagy as well as promoted sequestration of polyubiquitinated proteins and p62 in autophagosomes. These results suggest that SVIP plays a regulatory role in p97 subcellular localization and is a novel regulator of autophagy
    corecore