126 research outputs found
Square nearly nonpositive sign pattern matrices
AbstractA sign pattern matrix A is called square nearly nonpositive if all entries but one of A2 are nonpositive. We characterize the irreducible sign pattern matrices that are square nearly nonpositive. Further we determine the maximum (resp. minimum) number of negative entries that can occur in A2 when A is irreducible square nearly nonpositive (SNNP), and then we characterize the sign patterns that achieve this maximum (resp. minimum) number. Finally, we discuss some spectral properties of the sign patterns which are square nonpositive or square nearly nonpositive
Bounds on the largest eigenvalues of trees with a given size of matching
AbstractVery little is known about upper bound for the largest eigenvalue of a tree with a given size of matching. In this paper, we find some upper bounds for the largest eigenvalue of a tree in terms of the number of vertices and the size of matchings, which improve some known results
Design and Characteristic Analysis of Multicarrier Chaotic Phase Coded Radar Pulse Train Signal
By introducing phase code into multicarrier orthogonal frequency division multiplex signal, the multicarrier phase coded (MCPC) radar signal possesses a good spectrum utilization rate and can achieve a good combination of narrowband and wideband processing. Radar pulse train signal not only reserves the high range resolution of monopulse signal, but also has the same velocity resolution performance as continuous wave signal does. In this study, we use the chaotic biphase code generated by Chebyshev mapping to conduct a phase modulation on MCPC pulse train so as to design two different types of multicarrier chaotic phase coded pulse train signal. The ambiguity functions of the two pulse train signals are compared with that of P4 code MCPC pulse train. In addition, we analyze the influences of subcarrier number, phase-modulated bit number, and period number on the pulse train’s autocorrelation performance. The low probability of intercept (LPI) performance of the two signals is also discussed. Simulation results show that the designed pulse train signals have a thumbtack ambiguity function, a periodic autocorrelation side lobe lower than P4 code MCPC pulse train, and excellent LPI performance, as well as the feature of waveform diversity
Research Progress on Mechanism of Action of DHODH in Progression of Malignant Tumors
Dihydroorotate dehydrogenase (DHODH) is a flavin-dependent metabolic enzyme that oxidizes dihydroorotate acid to orotic acid in the de novo synthesis pathway of pyrimidine metabolism. DHODH is located in mitochondria, closely related to cellular oxidative phosphorylation, and an important suppressor of the ferroptosis pathway. This study investigates the influence of DHODH on the progression of malignant tumors, including its important role in the de novo synthesis of pyrimidine, oxidative phosphorylation, and ferroptosis. The objective is to present evidence that DHODH is a potential target for the clinical treatment of tumors
Effects of different stocking densities on the CO2 fluxes at water-air interface and the respiration metabolism in sea cucumber Apostichopus japonicus (Selenka)
Recently, abundant research has been devoted to investigating the variations of CO2 concentration in the atmosphere. However, the information of CO2 fluxes at the water-air interface remains limited, especially those from the respiratory metabolism of aquatic organisms. In the present study, a comprehensive analysis was carried out to evaluate the effects of different stocking densities of sea cucumber (Apostichopus japonicus) on the CO2 fluxes at water-air interface, and to explore the relationships between CO2 fluxes and respiratory metabolism. A total of 60 sea cucumbers were randomly classified into 4 groups with different stocking densities, including 2, 5 and 8 ind./tank (namely D2, D5 and D8 groups). After 34-day feeding trial, individuals in D5 had superior growth performance rather than D2 and D8. The analysis of modified floating static chambers clearly showed that the mean CO2 flux at the water-air interface in D5 was significantly higher than D2 and D8. Meanwhile, energy budget analysis revealed that D5 had higher carbon and nitrogen utilization, excretion energy and metabolizable energy, suggesting relatively active respiration metabolism in moderate stocking density. The activities of pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (OGDH) in respiratory tree and body wall tissues provided additional evidence for the higher respiration metabolism rate of individuals at D5, which may be responsible for the higher CO2 fluxes at the water-air interface. Transcriptome analysis was performed to uncover the molecular mechanism of respiratory metabolism affected by different stocking densities. The differentially expressed genes in respiration trees and body walls were significantly enriched in peroxisome, fatty acid degradation, and oxidative phosphorylation pathways. It may explain the differences of respiration metabolism rates at different stocking densities. The present study preliminarily revealed the CO2 fluxes variation at the water-air interface from aquatic invertebrates, and provided the scientific basis for the efficient and low-carbon agricultural technologies of sea cucumber
Highly controllable and reliable ultra-thin Parylene deposition
Thanks to the excellent barrier property and fabrication accessibility, Parylene has been actively used in the microelectromechanical system. An ultra-thin Parylene film with thickness smaller than 100 nm is usually required to precisely tune the surface property of substrate or protect the functional unit. The commercially available regular Parylene deposition is a dimer mass determined chemical vapor deposition process with a high output (i.e. a low deposition precision in term of thickness control), around 1.6 μm/g (the ratio of film thickness to the loaded dimer mass) for the machine in the author’s lab. Therefore, it is hard to controllably and reliably prepare a Parylene film with thickness smaller than 100 nm, which requires a dimer mass less than 62.5 mg. This paper reported a method to prepare ultra-thin Parylene films with the nominal thickness down to 1 nm. A home-made deposition chamber was put inside and connected with the regular machine chamber through a microfabricated orifice with feature size smaller than 1 mm. According to the free molecular flow theory, the pressure inside the deposition chamber can be predictably and controllably reduced, thereby an ultra-low output of Parylene deposition, as low as 0.08 nm/g, was successfully obtained. The deposition precision was increased by 4 orders of magnitude compared to that of a direct Parylene deposition. This highly controllable and reliable ultra-thin Parylene deposition technique will find promising applications in flexible electronics and biomedical microdevices
Genomic Analyses Reveal Mutational Signatures and Frequently Altered Genes in Esophageal Squamous Cell Carcinoma
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets
- …