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Abstract

A sign pattern matrixA is called square nearly nonpositive if all entries but one ofA2

are nonpositive. We characterize the irreducible sign pattern matrices that are square nearly
nonpositive. Further we determine the maximum (resp. minimum) number of negative entries
that can occur inA2 whenA is irreducible square nearly nonpositive (SNNP), and then we
characterize the sign patterns that achieve this maximum (resp. minimum) number. Finally, we
discuss some spectral properties of the sign patterns which are square nonpositive or square
nearly nonpositive. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

A sign pattern matrixis a matrix whose entries are in the set{+,−,0}. A gen-
eralized sign pattern matrixis a matrix whose entries are in the set{+,−,0,#},
where #= (+) + (−) is qualitatively ambiguous. Associated with eachn-by-n sign
pattern matrixA = (aij ) is a class of real matrices, called the sign pattern class of
A, defined by
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Q(A) = {B ∈ Mn(R): signbij = aij for all i andj }.
Given a sign pattern matrixA, A2 is in general a generalized sign pattern. If only

the signs of a real matrixA are given, then generally the sign pattern ofA2 will be
unpredictable, although not entirely arbitrary. Relatively little is known about the
possible sign correlations between the ambiguously signed entries ofA2, or about
the locations of the ambiguous entries. In qualitative matrix analysis, the knowledge
of the sign pattern ofA2 would be useful (see [2–4,7]).

The motivation of this paper is from [7]. In [7], the authors obtainedN−(A2) �
(n − 1)2 + 1 whenA2 � 0 andN−(A2) � n2 − 2 for arbitrary sign pattern matrix
and the maximum number can be achieved, whereN−(A2) denotes the number of
negative entries inA2 andn is the order ofA. A natural question now arises, what
properties mustA have if all the entries but one ofA2 are nonpositive? A sign pattern
A is calledsquare nearly nonpositive(SNNP) if all entries but one ofA2 are non-
positive. In Section 2 of this paper, we characterize the irreducible sign patterns that
are SNNP, and consider the number of negative entries inA2 whenA is irreducible
SNNP. In Section 3, we discuss some spectral properties of the sign patterns which
are square nonpositive or SNNP.

Let Qn denote the set of alln-by-n sign pattern matrices. IfA ∈ Qn is entry-
wise nonpositive (resp. nonnegative), we writeA � 0 (resp.A � 0). Similarly,A <

0 (A > 0) is used to represent an entrywise negative (positive) pattern.
To obtain our results, we need some graph theoretic concepts. ForA = (aij ) ∈

Qn, let SD(A) be thesigned directed graphon vertex setN = {1,2, . . . , n}, where
(i, j ) is an arc in SD(A) if and only if aij /= 0, and the sign of the arc(i, j) is

aij , denotedi
aij→ j. A path of lengthk in SD(A) (or, say inA), called ak-path, is

a sequence ofk arcs(i1, i2), (i2, i2), . . . , (ik, ik+1), corresponding to a path inA,
consisting of the nonzero product of entriesai1i2 · · · aikik+1 /= 0. A path in SD(A) is
said to be positive (negative) if the number of negative entries in it is even (odd). If
ik+1 = i1 andi1, i2, . . . , ik are all distinct, then the abovek-path of SD(A) is called
ak-cycle.

2. Irreducible SNNP sign patterns

In this section we give a characterization of irreducible SNNP patterns.

Lemma 2.1. LetA ∈ Qn. Then A is SNNP if and only if there exists an ordered pair
(i1, j1) such that there is a positive2-path fromi1 to j1 in SD(A) and for all other
ordered pair(i, j) /= (i1, j1), all 2-paths from i to j in SD(A) are negative.

Proof. Let A = (aij ) ∈ Qn. Then(A2)ij = ∑n
k=1 aikakj = −(or 0) if and only if

each termaikakj = −(or 0) for all k = 1,2, . . . , n. Hence the result follows. �
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Corollary 2.2. Let A ∈ Qn (n � 2) be irreducible and SNNP. Thenaii = 0 for
i = 1,2, . . . , n.

Proof. If aii /= 0 for somei, without loss of generality, we may assume thati = 1
anda11 > 0. Thusa11a11 > 0 and(A2)11�0 and all other entries ofA2 are nonposit-
ive. SinceA is irreducible, there exist vertices, say 2 and 3 such that 1→ 2 and
3 → 1 are arcs of SD(A). SinceA is SNNP and(A2)11�0, (A2)12 � 0, (A2)31 �
0. Hence 1

−→ 2, 3
−→ 1. Thus 3

−→ 1
−→ 2 is a positive 2-path from 3 to 2, a

contradiction. Thereforeaii = 0 for i = 1,2, . . . , n. �

Corollary 2.3. If A ∈ Qn (n � 2) is irreducible and SNNP, then (A2)ii � 0 for
i = 1,2, . . . , n.

Proof. If (A2)ii�0 for somei, there exists a vertexj, j /= i, such thati → j → i

is a positive 2-path ofA. Thusj → i → j is also a positive 2-path ofA. Hence
(A2)jj � 0, a contradiction. �

From the following proposition, we know that every irreducible SNNP sign pat-
tern has exactly one positive entry in its square, hence its square does not contain
any qualitatively ambiguous entries.

Proposition 2.4. LetA ∈ Qn be an irreducible and SNNP pattern. Then there exists
exactly one positive entry inA2.

Proof. If n = 1, then the result is obvious. Letn � 2. As A is an irreducible and
SNNP pattern, there exist verticesi andj such thati /= j and(A2)ij�0. If (A2)ij =
#, then there exist verticesk and l such thati → k → j and i → l → j are
positive and negative paths, respectively. Hence the signs ofi → k andi → l or
k → j and l → j are different. Without loss of generality, we may assume that

i
+→ k and i

−→ l. SinceA is irreducible, there exists a vertexs /= i such that

s → i is an arc of SD(A). If s
−→ i, thens

−→ i
−→ l is a positive 2-path froms

to l, this contradicts Lemma 2.1. Similarly, ifs
+→ i, we also reach a contradiction.

Therefore(A2)ij = +. �
If A2 has two entries that are not nonpositive, thenA2 is not necessarily unam-

biguous. For example, let

A =




0 + + 0 0
0 0 0 − 0
0 0 0 + 0
0 0 0 0 +
− 0 0 0 0



.

Then
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A2 =




0 0 0 # 0
0 0 0 0 −
0 0 0 0 +
− 0 0 0 0
0 − − 0 0




,

and there are entries # and+ in A2. �

From Corollary 2.2 and Proposition 2.4, it can be seen that there is no irreducible
and SNNP pattern of order 2. In what follows we always assume thatn � 3.

Theorem 2.5. Let A ∈ Qn (n � 3) be an irreducible pattern. Then A is SNNP if
and only if A is permutation similar to a partitioned matrix with the form

±


B11 B12 B13
B21 0 B23
B31 B32 0


 , (1)

where the diagonal blocks are square,B11 � 0, B12 � 0, B23 � 0, B32 � 0, B31 �
0, B2

11 = 0, B11B12 = 0, B31B11 = 0, B31B12 = 0,

B13 =




+ 0 · · · 0
+ 0 · · · 0
...

...
. . .

...

+ 0 · · · 0


 ,

and

B21 =




+ + · · · +
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


 .

Proof. If A is an irreducible SNNP pattern, then by Corollary 2.3 and Proposition
2.4, we may assume that(A2)rs = +, wherer /= s, and there exists a vertexk such
that r → k → s is a positive path, and(A2)ij � 0 for all (i, j) /= (r, s), i, j =
1, . . . , n.

Set V1 = {j : r → j → s is a positive 2-path in SD(A)}. ThenV1 /= ∅. Per-
forming a permutation similarity onA if necessary, we may assumeV1 = {1, . . . , k1}.
Clearly 1� k1 < n. If there exist two verticesj1, j2 ∈ V1 such thatr

+→ j1
+→ s

but r
−→ j2

−→ s, sinceA is irreducible, there exists a vertexx such thatx → r is
an arc of SD(A). Thus one of the pathsx → r → j1 andx → r → j2 is positive,
which is a contradiction. Hence all arcs fromr to the vertices inV1 have the same
sign. Similarly, all arcs from the vertices inV1 to salso have the same sign. Without

loss of generality, we may assume thatr
+→ j

+→ s for all j ∈ V1.
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Claim. For everyx /∈ V1, the lengths of all simple paths from s to x have the same
parity.

Otherwise, there are two simple pathsP1 andP2 froms to xsuch thatP1 is odd but

P2 is even, letP1 bes
−→ x1 → · · · → x2k → x, andP2 bes

−→ y1 → · · · →
y2m−1 → x. SinceA is irreducible and SNNP, and no 2-path contained inP1 or

P2 has the formr → j → s, we havex2k
−→ x, y2m−1

+→ x, and there exists

a vertexy such thatx → y. If x
+→ y, then y2m−1 = r, and y = s. Hencex ∈

V1, this is a contradiction. Ifx
−→ y, thenx2k

−→ x
−→ y. Hence(A2)x2k,y�0, a

contradiction. Therefore, the above claim holds.�

Set V2 = {i /∈ V1; there exists an odd simple path froms to i}, |V2| = k2, and
V3 = {i /∈ V1; there exists an even simple path froms to i}, it is easy to see thatr ∈
V2, s ∈ V3, andV1, V2, V3 form a partition ofV.

By the claim, any two vertices inV2 (V3) are not adjacent, the arcs toV2 are
negative and the arcs toV3 are positive. Specially, the arcs fromV3 to V2 are neg-
ative and the arcs fromV2 to V3 are positive. Also, since any 2-path whose middle
vertex is not inV1 is negative, it follows that any arc fromV2 is positive and any
arc from V3 is negative. Performing a permutation similarity onA if necessary,
we may assumeV2 = {k1 + 1, . . . , k1 + k2}, V3 = {k1 + k2 + 1, . . . , n} and fur-
ther, r = k1 + 1, s = k1 + k2 + 1. ThusA can be partitioned into the following
form:


B11 B12 B13
B21 0 B23
B31 B32 0


 ,

whereB12 � 0, B13 � 0, B21 � 0, B23 � 0, B31 � 0, B32 � 0.
Suppose there is a vertexj in V1 and a vertexx in V3 such thatx /= s andj → x

is an arc of SD(A). From the above,j → x is positive, and hence,r → j → x is
a positive 2-path, which is a contradiction. Thus

B13 =




+ 0 · · · 0
+ 0 · · · 0
...

...
. . .

...

+ 0 · · · 0


 .

Similarly,

B21 =




+ · · · +
0 · · · 0
...

. . .
...

0 · · · 0


 .
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Since all 2-paths not fromr to s in SD(A) are negative, we obtainB11 � 0, B2
11 =

0, B11B12 = 0, B31B11 = 0, B31B12 = 0.
The converse is obvious. �

If A is an irreducible SNNP pattern, thenA is permutation similar to form (1).
Since there is no 2-path in SD(B11), we can partition the vertex setV1 of SD(B11)

into three parts as follows:

X1={x ∈ V1, x is neither an initial vertex

nor a terminal vertex of any arcs in SD(B11)} ;

X2 = {x ∈ V1, x is an initial vertex of some arc in SD(B11)};

X3 = {x ∈ V1, x is a terminal vertex of some arc in SD(B11)}.
By the proof of Theorem 2.5, we can prove:

Theorem 2.6. Let A ∈ Qn (n � 3) be an irreducible pattern. Then A is SNNP if
and only if A is permutation similar to a partitioned matrix with the form

±




0 0 0 C14 C15
0 0 C23 C24 C25
0 0 0 0 C35

C41 C42 C43 0 C45
C51 0 C53 C54 0



,

whereC14 � 0, C23 � 0, C24 � 0, C45 � 0, C51 � 0, C53 � 0, C54 � 0, and
C51C14 = 0,



C15
C25
C35


 =




+ 0 · · · 0
+ 0 · · · 0
...

...
. . .

...

+ 0 · · · 0


 ,

and

(
C41 C42 C43

) =




+ · · · +
0 · · · 0
...

. . .
...

0 · · · 0


 .

We now turn our attention to finding the maximum and minimum number of
negative entries inA2 whenA is square nearly nonpositive. LetN−(A2) denote the
number of negative entries inA2. Note that if
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k1 k2 k3

A =


B11 B12 B13
B21 0 B23
B31 B32 0



k1
k2
k3

, (2)

whereB23 � 0, B32 � 0, B11 � 0, B12 � 0, B31 � 0, B2
11 = 0, B11B12 = 0,

B31B11 = 0, B31B12 = 0,

B13 =




+ 0 · · · 0
+ 0 · · · 0
...

...
. . .

...

+ 0 · · · 0


 ,

and

B21 =




+ · · · +
0 · · · 0
...

. . .
...

0 · · · 0


 ,

then

A2 =


B12B21 + B13B31 B13B32 B11B13 + B12B23
B21B11 + B23B31 B21B12 + B23B32 B21B13

B32B21 0 B32B23 + B31B13


 ,

where

B21B13 =




+ 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


 .

If the row i of B11B13 + B12B23 contains a nonzero entry, that is, there exists a

negative 2-pathi → x → y from vertexi ∈ V1 to a vertexy ∈ V3, theni
−→ x.

Thus there is no negative arc to vertexi and hence, the columni of B21B11 + B23B31
must be 0. Similarly if columnj of B21B11 + B23B31 contains a nonzero entry, then
the rowj ofB11B13 + B12B23 must be 0. Therefore, there are at least min(k1k3, k1k2)

zero entries inB11B13 + B12B23 andB21B11 + B23B31. Thus we have proven:

Lemma 2.7. Let A be of the form(2). Then

N−(A2) � k2
1 + k2

2 + k2
3 + 2(k2 + k3)k1 − min(k1k2, k1k3).

Theorem 2.8. LetA ∈ Qn(n � 3) be an irreducible SNNP pattern. ThenN−(A2) �
n2 − n, with equality if and only if A(or AT) is permutation similar to
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±




0 · · · 0 0 +
...

. . .
...

...
...

0 · · · 0 0 +
+ · · · + 0 +
− · · · − − 0



.

Proof. It is obvious forn = 3. Let n � 4. From Theorem 2.5 and Lemma 2.7, it
follows that

N−(A2) � k2
1 + k2

2 + k2
3 + 2(k2 + k3)k1 − min(k1k2, k1k3),

wherek1 + k2 + k3 = n. Let k4 = min{k2, k3}, andf (k1, k4) = k2
1 + k2

4 + (n − k1

− k4)
2 + 2(n − k1)k1 − k1k4. Then f (k1, k4) achieves its maximum value at the

boundary points on the domain 1� k1 � n − 2, 1 � k4 � n − 2. If k1 = 1, then
f (k1, k4) � (n − 1)2 + 2 < n2 − n for n � 4. If k1 = n − 2, thenf (k1, k4) � (n −
2)2 + 1 + 1 + 2(n − (n − 2))(n − 2) − (n − 2) = n2 − n.

Now assume thatA (orAT) is of the form (3). Then

A2 =




− · · · − − 0
...

. . .
...

...
...

− · · · − − 0
− · · · − − +
− · · · − 0 −



,

andN−(A2) = n2 − n.

Conversely, assume thatA is an irreducible SNNP pattern andN−(A2) = n2 −
n. By Theorem 2.5 we may assume thatA is of the form (2). From the above
proof, it follows k1 = n − 2. From the proof of Lemma 2.7, there are exactly 1+
min{k1k2, k1k3} = 1 + k1 = n − 1 zero entries inA2. Thus

A2 =




− · · · − −
...

. . .
...

... uT

− · · · − −
v − +

− · · · − 0 −



,

whereuT = B11B13 + B12B23, v = B21B11 + B23B31. If B11 /= 0, then there exist

j1, j2 ∈ V1 such thatj1
−→ j2, then there is no negative 2-path fromj2 to j1. This

is a contradiction with(A2)j1j2 < 0. HenceB11 = 0. ThereforeuT = B12B23 =
B12, v = B23B31 = B31. If B12 /= 0 andB31 /= 0, and letBT

12 = (a1, a2, . . . , an−2),

B31 = (b1, b2, . . . , bn−2), then there existi, j such that 1� i, j � n − 2, i /= j

andai = −, bj = −, thusbi = 0, aj = 0 byuT = B12, andv = B31. Hence(B12
B31 + B13B31)ji = aj + bi = 0, this is a contradiction withB12B21 + B13B31 < 0.
Therefore at least one ofB12 andB31 is a zero block. Since there are exactlyn − 2
zero entries inuT = B12 andv = B21, we haveB12 = 0, B31 = (−,−, · · · ,−), or
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B31 = 0, BT
12 = (−,−, · · · ,−). ThereforeA (or AT) is permutation similar to form

(3). �

We conclude this section by considering the minimum number ofN−(A2) when
A is an irreducible and SNNP pattern.

Theorem 2.9. LetA ∈ Qn (n � 3) be an irreducible SNNP pattern. ThenN−(A2) �
n − 1, with equality if and only if SD(A) is an odd cycle in which certain two incident
arcs have the same sign and the other arcs have alternating signs.

Proof. SinceA is irreducible and SNNP, SD(A) is strongly connected. Thus there
exists at least one 2-path from each vertex of SD(A), henceN−(A2) � n − 1. The
equality holds if and only if there exists exactly one 2-path from each vertex of
SD(A). Therefore the outdegree of every vertex of SD(A) is one, so SD(A) is a cycle.
By Theorem 2.5,k1 = 1, n = 2l + 1 for somel and the cycle contains only two
incident arcs that have the same sign and all other arcs have alternating signs.�

3. Some spectral properties

In [7], the authors have given some interesting properties for the eigenvalues of
sign patterns, specially, they obtained that the square maximally nonpositive patterns
that require exactly one pure imaginary eigenvalue pair, and they asked if the square
maximally nonpositive patterns are the only patterns that require exactly one pure
imaginary eigenvalue pair. The following example gives a negative answer.

Example 3.1. Let

A =




0 + 0 0
+ 0 − 0
0 + 0 −
0 0 + 0


 .

ThenA is irreducible, and for eachB ∈ Q(A), B is similar to

B̃ =




0 a 0 0
1 0 −b 0
0 1 0 −c

0 0 1 0


 ,

wherea, b, c > 0. Then the characteristic polynomial of̃B is given byPB̃(x) =
x4 + (b + c − a)x2 − ac.By Descartes’s rule of signs (see [8]),t2 + (b + c − a)t −
ac = 0 has one positive root and one negative root. ThusA requires exactly one pure
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imaginary eigenvalue pair, butA is not a square maximally nonpositive pattern. But
we have:

Proposition 3.2. LetA ∈ Qn(n � 2) be irreducible. If A requiresn − 2 eigenvalues
equal to0, and a pure imaginary eigenvalue pair, then up to permutation similarity
and signature similarity(that is, similarity via a diagonal matrix, each of its diagonal
entry is+ or −), A is equivalent to the square maximally nonpositive patterns

±




0 + · · · +
− 0 · · · 0
...

− 0 · · · 0


 .

Proof. If sign patternA satisfies the condition of this proposition, thenA must be
a sign skew-symmetric matrix whose digraph is a doubly directed tree (see [1,6]).
SinceA requiresn − 2 eigenvalues equal to 0, term rank ofA is 2 (see [5]). Thus
D(A) is a doubly directed star. Hence, up to permutation similarity and signature
similarity, A is equivalent to the square maximally nonpositive patterns.�

For square nearly nonpositive patterns, we have:

Proposition 3.3. Let A ∈ Qn (n � 3) be an irreducible and SNNP pattern, and
N−(A2) = n2 − n. Then A requiresn − 3 eigenvalues equal to0, a nonzero real
eigenvalue, and a pair of nonreal eigenvalues.

Proof. From Theorem 2.8,N−(A2) = n2 − n if and only if A orAT is permutation
similar to

±




0 · · · 0 0 +
...

...
...

0 · · · 0 0 +
+ · · · + 0 +
− · · · − − 0



.

Note that the characteristic polynomial of a matrixB ∈ Q(A) has the formPB(x) =
xn−3(x3 + ax + b), for somea > 0 andb /= 0. By Descartes’s rule of signs,x3 +
ax + b = 0 (wherea > 0, b > 0 or b < 0) has one nonzero real root and a pair of
nonreal roots. �
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