N,

. LINEAR ALGEBRA
5@ AND ITS
53{9 APPLICATIONS

ELSEVIER Linear Algebra and its Applications 327 (2001) 41-51
www.elsevier.com/locate/laa

Square nearly nonpositive sign pattern matrices
Yaoping Hou®P*, Jiongsheng L?

aDepartment of Mathematics, Hunan Normal University, Changsha, Hunan 410081,
People’s Republic of China
bDepartment of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026,
People’s Republic of China

Received 26 January 2000; accepted 12 September 2000
Submitted by R.A. Brualdi

Abstract

A sign pattern matrixA is called square nearly nonpositive if all entries but one1éf
are nonpositive. We characterize the irreducible sign pattern matrices that are square nearly
nonpositive. Further we determine the maximum (resp. minimum) number of negative entries
that can occur iM2 whenA is irreducible square nearly nonpositive (SNNP), and then we
characterize the sign patterns that achieve this maximum (resp. minimum) number. Finally, we
discuss some spectral properties of the sign patterns which are square nonpositive or square
nearly nonpositive. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

A sign pattern matrixs a matrix whose entries are in the $et, —, 0}. A gen-
eralized sign pattern matrixis a matrix whose entries are in the get, —, 0, #},
where #= (+) + (—) is qualitatively ambiguous. Associated with eaehy-n sign
pattern matrixA = (a;;) is a class of real matrices, called the sign pattern class of
A, defined by
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Q(A) = {B € M, (R): signb;; = a;; for all i and}.

Given a sign pattern matrix, A2 is in general a generalized sign pattern. If only
the signs of a real matrik are given, then generally the sign patternadfwill be
unpredictable, although not entirely arbitrary. Relatively little is known about the
possible sign correlations between the ambiguously signed entri¢$, afr about
the locations of the ambiguous entries. In qualitative matrix analysis, the knowledge
of the sign pattern o2 would be useful (see [2—4,7]).

The motivation of this paper is from [7]. In [7], the authors obtained A?) <
(n —1)2+ 1 whenA2 < 0 andN_(A2) < n? — 2 for arbitrary sign pattern matrix
and the maximum number can be achieved, whéréA2) denotes the number of
negative entries iM? andn is the order ofA. A natural question now arises, what
properties mus# have if all the entries but one @f are nonpositive? A sign pattern
Ais calledsquare nearly nonpositieSNNP) if all entries but one oA? are non-
positive. In Section 2 of this paper, we characterize the irreducible sign patterns that
are SNNP, and consider the number of negative entriei iwhenA is irreducible
SNNP. In Section 3, we discuss some spectral properties of the sign patterns which
are square nonpositive or SNNP.

Let O, denote the set of ali-by-n sign pattern matrices. 1A € Q, is entry-
wise nonpositive (resp. nonnegative), we wrte< 0 (resp.A > 0). Similarly, A <
0 (A > 0) is used to represent an entrywise negative (positive) pattern.

To obtain our results, we need some graph theoretic conceptsA Fofu;;) €
On, let SD(A) be thesigned directed grapbn vertex seiV = {1, 2, ..., n}, where
(i, j) is an arc in SDA) if and only if ;; # 0, and the sign of the arg, j) is

a;j, denoted; 4 j. A path of lengthk in SD(A) (or, say inA), called ak-path, is

a sequence of arcs(i1, i2), (iz, i2), ..., (i, ix+1), corresponding to a path iA,
consisting of the nonzero product of entrigg, - - - a;.;,., # 0. A path in SO(A) is

said to be positive (negative) if the number of negative entries in it is even (odd). If
ix+1 = i1 andi1, io, ..., iy are all distinct, then the abokepath of SO@A) is called
ak-cycle.

2. Irreducible SNNP sign patterns

In this section we give a characterization of irreducible SNNP patterns.
LemmaZ2.l. LetA € Q,. Then Ais SNNP if and only if there exists an ordered pair
(i1, j1) such that there is a positiva-path fromi1 to j; in SD(A) and for all other
ordered pair(i, j) # (i1, j1), all 2-paths fromito jin SIDA) are negative

Proof. Let A = (a;;) € Qn. Then(A?);; = Y i_; airaxj = —(or 0) if and only if
each termy;rar; = —(or Q) forallk = 1,2, ..., n. Hence the result follows. O
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Corollary2.2. Let A € 0, (n > 2) be irreducible and SNNPTheng;; = 0 for
i=12,...,n.

Proof. If a;; # 0 for somei, without loss of generality, we may assume that 1
anday; > 0. Thusaiiaip > 0 and(AZ)lly(O and all other entries of2 are nonposit-
ive. SinceA is irreducible, there exist vertices, say 2 and 3 such that12 and
3 — 1are arcs of SD4). SinceAis SNNP and 42)11£0, (A%)12 <0, (A?)31 <

0.Hence 1— 2, 3 — 1. Thus3— 1 — 2 is a positive 2-path from 3 to 2, a
contradiction. Thereforg;; =0fori =1,2,...,n. O

Corollary2.3. If A€ Q, (n > 2) is irreducible and SNNPthen (42);; < 0 for
i=12,...,n.

Proof. If (Az),-,~¢0for some, there exists avertex j + i, suchthat — j — i
is a positive 2-path ofA. Thusj — i — j is also a positive 2-path of. Hence
(A?);; £ 0, a contradiction. [J

From the following proposition, we know that every irreducible SNNP sign pat-
tern has exactly one positive entry in its square, hence its square does not contain
any qualitatively ambiguous entries.

Proposition 2.4. LetA € Q, be anirreducible and SNNP patterfihen there exists
exactly one positive entry iAZ2.

Proof. If n = 1, then the result is obvious. Lat> 2. As A is an irreducible and
SNNP pattern, there exist verticeandj such that + j and(AZ),-j £O0. If (Az)ij =

#, then there exist verticels and| such thatt — k — j andi — [ — j are
positive and negative paths, respectively. Hence the sighs-ef k andi — [ or

k — j andl — j are different. Without loss of generality, we may assume that

i 55 kandi S I SinceA is irreducible, there exists a vertex# i such that
s — iisanarcof SDA). If s — i, thens — i — [is a positive 2-path frors
to/, this contradicts Lemma 2.1. Similarly,sif X i, we also reach a contradiction.
Therefore(A?);; = +. O

If A% has two entries that are not nonpositive, thehis not necessarily unam-
biguous. For example, let

+ 0

b
I
ocooo
COooo+
oo+ |
o+t ocooo

0
0
0
0

Then
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0 0 0 # O
0 0 0 0 —
A’=]l0 0 0 0 +/|,
- 0 0 0 O
0 — — 0 O

and there are entries # andin A2. [

From Corollary 2.2 and Proposition 2.4, it can be seen that there is no irreducible
and SNNP pattern of order 2. In what follows we always assume:tba8.

Theorem 2.5. Let A € Q, (n > 3) be an irreducible patternThen A is SNNP if
and only if A is permutation similar to a partitioned matrix with the form
Bi11 Bi12 B3
+ | Bo1 0 By3 ], (1)
B31 Bz O

where the diagonal blocks are squaBy1 < 0, B12 <0, B3 > 0, B32 <0, B3 <
0, B]2_1 =0, B11B12=0, B31B11 =0, B31B12=0,

+ 0 - 0

+ 0 - 0
Biz=1. . . .|

4+ 0 - 0

and

+ o+

0 0 ... 0
B21= . . . .

0 0 - 0

Proof. If A is an irreducible SNNP pattern, then by Corollary 2.3 and Proposition
2.4, we may assume thad?),; = +, wherer # s, and there exists a vertéosuch
thatr — k — s is a positive path, andA?);; < 0 for all (i, j) # (r,s), i, =
1,....n.

SetVi={j: r - j — s isapositive 2-path in SD(A) Then V; + @. Per-
forming a permutation similarity oA if necessary, we may assurvie= {1, ..., k1}.

Clearly 1< k1 < n. If there exist two verticeg1, j» € V1 such thatr % J1 s

butr — j» — s, sinceAis irreducible, there exists a vertgsuch thatt — r is
an arc of S@A). Thus one of the paths - r — jiandx — r — j2is positive,
which is a contradiction. Hence all arcs franto the vertices inv1 have the same
sign. Similarly, all arcs from the vertices Iy to salso have the same sign. Without

loss of generality, we may assume that> j s forall j € V1.
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Claim. For everyx ¢ Vi, the lengths of all simple paths from s to x have the same
parity.

Otherwise, there are two simple pathisand P, from sto x such thatP; is odd but

Pyiseven,letP,bes - x1 = -+ = x — x,andP,bes - y; —» .- —
yom—1 — x. Since A is irreducible and SNNP, and no 2-path contained’inor

P, has the formr — j — s, we havexs, — x, yom—1 X x, and there exists
a vertexy such thatx — y. If x * y, thenyz,—1 =r, andy = 5. Hencex €

V1, this is a contradiction. It — y, thenxy — x — y. Hence(A?),,, ,%0, a
contradiction. Therefore, the above claim hold§l

Set Vo = {i ¢ V1; there exists an odd simple path fr@to i}, |V2| = k2, and
V3 = {i ¢ V1, there exists an even simple path frano i}, it is easy to see thate
Vo, s € V3, andVy, Vo, V3form a partition ofV.

By the claim, any two vertices if¥2 (V3) are not adjacent, the arcs ¥ are
negative and the arcs i3 are positive. Specially, the arcs frovia to V, are neg-
ative and the arcs frolz to V3 are positive. Also, since any 2-path whose middle
vertex is not inVy is negative, it follows that any arc froi, is positive and any
arc from V3 is negative. Performing a permutation similarity #nif necessary,
we may assumeé/s = {k1+1,..., k1 +k2}, Va={k1+k2+1,...,n} and fur-
ther,r =k1+ 1, s = k1 + k2+ 1. Thus A can be partitioned into the following
form:

Bi1 Bi2 B3
By 0 Basl|,
Bs1 B3 O

whereB12 <0, B13 >0, Bp1 >0, Bz >0, B31 <0, B3 <0.

Suppose there is a vertgin V1 and a vertexin V3 such thatt #+ s andj — x
is an arc of SDA). From the abovej — x is positive, and hence, —» j — x is
a positive 2-path, which is a contradiction. Thus

+ 0 .-~ 0

+ 0 --- 0
B3 = :

+ 0 0

Similarly,

+ +

0 0
B21 =
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Since all 2-paths not fromto sin SD(A) are negative, we obtaif1; < 0, Bfl =
0, B11B12 =0, B31B11 =0, B31B12=0.
The converse is obvious. [J

If Ais an irreducible SNNP pattern, thénis permutation similar to form (1).
Since there is no 2-path in $B;11), we can partition the vertex s&y of SD(B11)
into three parts as follows:

X1={x € V4, xis neither an initial vertex
nor a terminal vertex of any arcs in $By1)} ;

Xo = {x € V1, x is an initial vertex of some arc in SB11)};

X3 = {x € V1, x is aterminal vertex of some arc in $Bx1)}.

By the proof of Theorem 2.5, we can prove:

Theorem 2.6. Let A € Q, (n > 3) be an irreducible pattern. Then A is SNNP if
and only if A is permutation similar to a partitioned matrix with the form

0 0 0 Cisa Ci15

0 0 Co3 Cou Cos
+]1 O 0 0 0 Css,

Ca1 Cyq2 Caz3 0 Cg5

Cs1 0 Csz3 Csg O

whereC14 <0, C23<0, C24<0, C45>0, C51<0, C53<0, C54<0, and
C51C14 =0,

+ 0 .- 0
Cis + 0 --- 0
Cxs | = : ,
Css .
+ 0 0
and
+ +
0 0
(C41 Cs2 C43)= .
0O ... 0

We now turn our attention to finding the maximum and minimum number of
negative entries i? when A is square nearly nonpositive. Lat_(A?) denote the
number of negative entries ii?. Note that if
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k1 ko k3
B1x B12 Bi3\ k1
B1 0  Bxs|k, (2

B3a1 B3z 0 ) k3

where B3 > 0, B32 <0, B11<0, B12<0, B31<0, B%l =0, B11B12 =0,
B31B11 =0, B31B12 =0,

+ 0 .- 0
+ 0 .- 0
Bi=|. . . .|
+ 0 0
and
+ -
0 0
Bar=1. K
0O -.- 0
then
) B12B71 + B13B31 B13B32 B11B13+ B12B23
A = | B21B11+ B23B31  B21Bi12 + B23B32 B21B13 ,
B32B21 0 B32B23+ B31B13
where
+ 0 0
0O O 0
Bo1B13 = S _ :
0 0 -.- 0

If the rowi of B11B13 + B12B23 contains a nonzero entry, that is, there exists a

negative 2-pathh — x — y from vertexi € V1 to a vertexy € Vs, theni — x.
Thus there is no negative arc to vertend hence, the columrof B21B11 + B23B31
must be 0. Similarly if columf of B>1B11 + B23B31 contains a honzero entry, then
the rowj of B11B13 + B12B23must be 0. Therefore, there are at least(hikg, k1k2)
zero entries inB11B13 + B12B23 andB21B11 + B23B31. Thus we have proven:

Lemma2.7. Let A be of the fornf2). Then
N_(A ) kl + k2 + k3 + 2(k2 + k3)k1 — min(k1ko, k1k3).

Theorem 2.8. LetA € Q,(n > 3) be anirreducible SNNP patterfihenN_(A2) <
n? — n, with equality if and only if Xor AT) is permutation similar to
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0O --- 0 0 +
*lo 0 0 +
+ + 0 +
- - -0

Proof. It is obvious forn = 3. Letn > 4. From Theorem 2.5 and Lemma 2.7, it
follows that

N_(A?) < k§ + k3 + k5 + 2(ka + k3)ky — min(kka, k1ks),

whereky + kz + k3 = n. Let kg = min{k, k3}, and f (k1, ka) = k2 + k2 + (n — k1
— ka)2 + 2(n — k1)k1 — k1ks. Then f(k1, k4) achieves its maximum value at the
boundary points on the domainlk; <n—2, 1 <kgs<n—2 1If kg =1, then
flhk1,ka) <(n—1)°2+2<n?—nforn >4.1f k1 =n — 2, thenf (ky, ka) < (n —
224+141420—(n—2)n—2)— (n—2) =n?—n.

Now assume tha (or A7) is of the form (3). Then

- ... — — 0

andN_(A2%) = n? —n.

Conversely, assume thatis an irreducible SNNP pattern andl_(A?) = n? —
n. By Theorem 2.5 we may assume thatis of the form (2). From the above
proof, it follows k1 = n — 2. From the proof of Lemma 2.7, there are exactly 1
min{kik2, k1k3} = 1+ k1 = n — 1 zero entries imM2. Thus

2 S

- ... — 0 =

whereu" = B11B13+ B12B23, v = Bo1B11 + B23Bai. If Bi1 # 0, then there exist

Jj1, jo € V1 such thatjy — j», then there is no negative 2-path frgimto j;. This
is a contradiction with(Az)jlj2 < 0. Hence B11 = 0. Thereforeu = B12By3 =
Bi12, v = B23B31 = Bz1. If B12 #+ 0andB31 # 0, and IetBIZ = (ay,az,...,a,-2),
B31 = (b1, b2, ...,b,—2), then there exist, j such that I1<i, j<n—2, i £
anda; = —, bj = —, thusb; =0, a; = 0 byu' = Bip, andv = Bs1. Hence(B12
Bs1+ B13B31)j;i = a; + b; = 0, this is a contradiction witlB12B21 + B13B31 < 0.
Therefore at least one df12> and Bz; is a zero block. Since there are exaatly- 2
zero entries int" = Byo andv = Ba1, we haveBi2 =0, B31 = (—, —, --+, —), OF
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B31 =0, BlT2 = (—,—, -+, —). ThereforeA (or AT) is permutation similar to form
3). O

We conclude this section by considering the minimum numbe¥.ofA2) when
Alis an irreducible and SNNP pattern.

Theorem 2.9. LetA € Q, (n > 3) be anirreducible SNNP patterfihenN_(A2) >
n — 1, with equality if and only if SDA) is an odd cycle in which certain two incident
arcs have the same sign and the other arcs have alternating.signs

Proof. SinceA is irreducible and SNNP, S@) is strongly connected. Thus there
exists at least one 2-path from each vertex of 8 henceN_(A2) > n — 1. The
equality holds if and only if there exists exactly one 2-path from each vertex of
SD(A). Therefore the outdegree of every vertex of(@Dis one, so SIDA) is a cycle.

By Theorem 2.5k1 =1, n = 2/ + 1 for somel and the cycle contains only two
incident arcs that have the same sign and all other arcs have alternating $igns.

3. Some spectral properties

In [7], the authors have given some interesting properties for the eigenvalues of
sign patterns, specially, they obtained that the square maximally nonpositive patterns
that require exactly one pure imaginary eigenvalue pair, and they asked if the square
maximally nonpositive patterns are the only patterns that require exactly one pure
imaginary eigenvalue pair. The following example gives a negative answer.

Example3.1. Let

0 + 0 0
[+ 0 - o0
A=1lo0 + o -
0 0 + 0

ThenAs irreducible, and for eacB € Q(A), Bis similar to

0 a 0 O
. [1 0 —» o0
B=1o 1 0o —c|

00 1 0

wherea, b, ¢ > 0. Then the characteristic polynomial @f is given by Pz (x) =
x%+ (b + ¢ — a)x? — ac. By Descartes's rule of signs (see [8B+ (b + ¢ — a)r —
ac = 0 has one positive root and one negative root. Thusquires exactly one pure



50 Y. Hou, J. Li/ Linear Algebra and its Applications 327 (2001) 41-51

imaginary eigenvalue pair, bidtis not a square maximally nonpositive pattern. But
we have:

Proposition 3.2. LetA € Q,(n > 2) beirreducible If A requiresn — 2 eigenvalues
equal to0, and a pure imaginary eigenvalue pathen up to permutation similarity
and signature similaritythat is similarity via a diagonal matrixeach of its diagonal
entry is+ or —), A is equivalent to the square maximally nonpositive patterns

o + - +

-0 --- 0
+

-0 -.- 0

Proof. If sign patternA satisfies the condition of this proposition, th&must be

a sign skew-symmetric matrix whose digraph is a doubly directed tree (see [1,6]).
SinceA requiresn — 2 eigenvalues equal to 0, term rank/Ais 2 (see [5]). Thus
D(A) is a doubly directed star. Hence, up to permutation similarity and signature
similarity, A is equivalent to the square maximally nonpositive patternsl

For square nearly nonpositive patterns, we have:
Proposition 3.3. Let A € Q, (n > 3) be an irreducible and SNNP patterand
N_(A?) =n? —n. Then A requires: — 3 eigenvalues equal t6, a nonzero real

eigenvalueand a pair of nonreal eigenvalues

Proof. From Theorem 2.8V_(A?) = n? —nifand only if A or AT is permutation
similar to

0o --- 0 0 +
*lo ... 0 0 +
+ - 4+ 0 +
- ... — -0

Note that the characteristic polynomial of a matBixc Q(A) has the formPg(x) =
x"~3(x3 + ax + b), for somea > 0 andb + 0. By Descartes’s rule of signs? +

ax + b =0 (wherea > 0, b > 0 orb < 0) has one nonzero real root and a pair of
nonreal roots. [J
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