Bounds on the largest eigenvalues of trees with a given size of matching

Yaoping Hou ${ }^{\text {a,* }}$, Jiongsheng Li ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
${ }^{\mathrm{b}}$ Department of Mathematics, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China

Received 25 June 2000; accepted 31 July 2001
Submitted by S. Friedland

Abstract

Very little is known about upper bound for the largest eigenvalue of a tree with a given size of matching. In this paper, we find some upper bounds for the largest eigenvalue of a tree in terms of the number of vertices and the size of matchings, which improve some known results. © 2002 Elsevier Science Inc. All rights reserved.

AMS classification: 05C20; 05C50
Keywords: Tree; Matching; The largest eigenvalue of a graph; Upper bound

1. Introduction

Let G be a connected graph with n vertices and $A(G)$ the adjacency matrix of G. Then $A(G)$ is irreducible and symmetric. All eigenvalues of G are real, and the largest eigenvalue of G is one multiplicity. Without loss of generality, we can assume that $\lambda_{1}(G)>\lambda_{2}(G) \geqslant \lambda_{3}(G) \geqslant \cdots \geqslant \lambda_{n}(G)$ are all eigenvalues of G. When G is a bipartite graph, its eigenvalues have physical interpretations in the quantum chemical theory, so it is significant and necessary to investigate the relations between the

[^0]graph-theoretic properties of G and its eigenvalues. Up to now, the eigenvalues of a tree T with a perfect matching have been studied by several authors (see $[2,7,8]$). However, when a tree has no perfect matching but has an m-matching M, namely, M consists of m mutually independent edges, very little is known about the eigenvalues of a tree T with an m-matching. The purpose of this paper is to find some upper bounds for the largest eigenvalues of trees in terms of the number of vertices and the size of matchings.

Let T be a tree with n vertices. The classical upper bound of $\lambda_{1}(T)$ is

$$
\begin{equation*}
\lambda_{1}(T) \leqslant \sqrt{n-1} \tag{1.1}
\end{equation*}
$$

with equality if and only if T is the star graph S_{n}. Star graph S_{n} with n vertices can be characterized within the set of all trees with n vertices by the property: each matching consists of only one edge. Hence in order to improve (1.1) for trees, it is natural to impose some upper bounds on the size of a matching of trees. In this paper, we will refine (1.1) for the trees with an m-matching.

We denote by S_{n}, K_{n}, and P_{n} the star graph, the complete graph, and the path graph with n vertices, respectively, and denote by $r K_{s}$ the disjoint union of r copies of K_{s}. We denote by $G \cup H$ the graph whose components are G and H. Other graph-theoretic notations may refer to [1].

2. Some lemmas

Denote the characteristic polynomial of a graph G by $p(G ; x)$, and recall that the largest eigenvalue of G is just the largest root of the equation $p(G ; x)=0$. Therefore,

$$
\begin{equation*}
p(G ; x)>0 \quad \text { for all } x>\lambda_{1}(G) \tag{2.1}
\end{equation*}
$$

As an immediate consequence of (2.1), we have the following elementary but useful statement.

Lemma $2.1[3,4]$. Let F and H be two graphs. If $p(F ; x)<p(H ; x)$ for $x \geqslant \lambda_{1}(H)$, then $\lambda_{1}(F)>\lambda_{1}(H)$.

The following result is often used to calculate the characteristic polynomials of trees.

Lemma 2.2 [3]. Let T be a tree and $e=u v$ be an edge of T. Then

$$
\begin{equation*}
p(T ; x)=p(T-e ; x)-p(T-u-v ; x) . \tag{2.2}
\end{equation*}
$$

Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. A graph G^{\prime} is a subgraph of G if $V\left(G^{\prime}\right) \subseteq V(G)$, and $E\left(G^{\prime}\right) \subseteq E(G)$. A subgraph G^{\prime} of G is called proper if $G^{\prime} \neq G$. A spanning subgraph of G is a subgraph G^{\prime} with
$V\left(G^{\prime}\right)=V(G)$. Let G be a connected graph, and G^{\prime} be a proper spanning subgraph of G. By the well-known Frobenius theorem, we have $\lambda_{1}(G)>\lambda_{1}\left(G^{\prime}\right)$. Moreover, the following lemma holds.

Lemma 2.3 [6].
(i) Let G be a connected graph, and G^{\prime} be a proper spanning subgraph of G. Then

$$
p\left(G^{\prime} ; x\right)>p(G ; x) \quad \text { for all } x \geqslant \lambda_{1}(G) .
$$

(ii) Let G^{\prime}, H^{\prime} be spanning subgraphs of connected graphs G and H, respectively, and $\lambda_{1}(G) \geqslant \lambda_{1}(H)$, and G^{\prime} is a proper subgraph of G. Then

$$
p\left(G^{\prime} \cup H^{\prime} ; x\right)>p(G \cup H ; x) \quad \text { for all } \lambda \geqslant \lambda_{1}(G) .
$$

Two edges of a graph are said to be independent if they are not incident with a common vertex. An m-matching of a graph G is a set of m mutually independent edges. It is clear that every m-matching is a subgraph $m K_{2}$ of G. In this paper, we say a tree T with an m-matching means that T has at least an m-matching, and T may or may not have a matching whose size is more than m. A matching M saturates a vertex v, and v is said to be M-saturated if some edge of M is incident with v; otherwise, v is M-unsaturated. A matching M is said to be perfect if every vertex of G is M-saturated. It is easy to prove by induction that a perfect matching of a tree is unique when it exists. The following three lemmas are often used to prove our main results in the following section.

Lemma 2.4. Let T be a tree with $n(n>2)$ vertices and with a perfect matching. Then T has at least two pendant vertices such that they are adjacent to vertices of degree 2, respectively.

Proof. First, we root T at a vertex r and choose a pendant vertex v furthest from r. Let $e=v w$ be a pendant edge. If the degree of w is not 2, there would be a pendant vertex $u \neq v$ joined to w and T cannot have a perfect matching. Second we root T at the vertex v and choose a pendant vertex x furthest from v. As the above proof, x is also adjacent to a vertex of degree 2 .

By Lemma 2.4 we have:
Lemma 2.5. Let T be an n-vertex tree with an m-matching, and $n=2 m+1$. Then T has a pendant vertex which is adjacent to a vertex of degree 2.

Lemma 2.6. Let T be an n-vertex tree with an m-matching where $n>2 m$. Then there is an m-matching M and a pendant vertex v such that M does not saturate v.

Proof. For $n \leqslant 3$ the result clearly holds. We assume that $n>3$ and proceed by induction. Consider an m-matching \bar{M} of T. Root T at a vertex r and let v be a
pendant vertex furthest from r. Let $v w$ be the pendant edge which is incident with v. If the edge $v w$ does not belong to \bar{M}, then the conclusion follows. So we may assume that the edge $v w$ belongs to \bar{M}. If the degree of w is not 2 , then there is a pendant vertex $\bar{v} \neq v$ joined to w which is \bar{M}-unsaturated. Thus we may assume the degree of w is 2 . Let $w w^{\prime}$ be the edge with $w^{\prime} \neq v$, and let T^{\prime} be the tree obtained from T by removing vertices v and w and edges $v w$ and $w w^{\prime}$. Then T^{\prime} has $n-2=n^{\prime}$ vertices and an m^{\prime}-matching, where $m^{\prime}=m-1$. Since $n^{\prime}>2 m^{\prime}$, it follows by induction that T^{\prime} has an m^{\prime}-matching M^{\prime} and a pendant vertex v^{\prime} which is M^{\prime}-unsaturated. If $v^{\prime} \neq w^{\prime}$, then $M^{\prime} \cup\{v w\}$ is an m-matching of T not saturating the pendant vertex v^{\prime} of T. If $v^{\prime}=w^{\prime}$, then $M^{\prime} \cup\left\{v^{\prime} w\right\}$ is an m-matching of T not saturating the pendant vertex v. Hence the lemma holds by induction.

3. The largest eigenvalues of trees with a given size of matching

Let n and m be positive integers and $n \geqslant 2 m$. We define a tree $A(n, m)$ with n vertices as follows: $A(n, m)$ is obtained from the star graph S_{n-m+1} with $n-m+1$ vertices by attaching a pendant edge to each of certain $m-1$ non-central vertices of S_{n-m+1}. We call $A(n, m)$ a spur and note that it has an m-matching. The center of $A(n, m)$ is the center of the star S_{n-m+1}. For $n>2 m$, let $B(n, m)$ be the graph obtained from the spur $A(n-1, m)$ by attaching a pendant edge to one vertex of degree 2. Then $B(n, m)$ has an m-matching. The center of $B(n, m)$ is the center of the spur $A(n-1, m)$. For $m \geqslant 3$, let $C(n, m)$ be the graph obtained from the spur $A(n-2, m-1)$ by attaching a path of length 2 to one vertex of degree 2 . Then $C(n, m)$ has an m-matching. The center of $C(n, m)$ is the center of the spur $A(n-2, m-1)$. In Fig. 1 we have drawn $A(14,6), B(14,6)$ and $C(14,6)$.

We now compute the characteristic polynomials of graphs $A(n, m), B(n, m)$, and $C(n, m)$, we need the following lemma [3, p. 60].

Lemma 3.1. Let H be a graph obtained from the graph G with vertex-set $\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$ in the following way:
(i) To each vertex x_{i} of G a set \mathscr{V}_{i} of k new isolated vertices is added; and
(ii) x_{i} is joined by an edge to each of the k vertices of $\mathscr{V}_{i}(i=1,2, \ldots, l)$.

Then

Fig. 1. Trees $A(14,6), B(14,6)$ and $C(14,6)$.

$$
\begin{equation*}
p(H ; x)=x^{l k} p\left(G ; x-\frac{k}{x}\right) . \tag{3.1}
\end{equation*}
$$

Proposition 3.2.

$$
\begin{align*}
p(A(n, m) ; x)= & x^{n-2 m}\left(x^{2}-1\right)^{m-2} \\
& \times\left[x^{4}-(n-m+1) x^{2}+n-2 m+1\right] \tag{3.2}\\
p(B(n, m) ; x)= & x^{n-2 m}\left(x^{2}-1\right)^{m-3}\left[x^{6}-(n-m+2) x^{4}+(3 n-4 m-1) x^{2}\right. \\
& -2(n-2 m)] \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
p(C(n, m) ; x)= & x^{n-2 m}\left(x^{2}-1\right)^{m-4} \\
& \times\left[x^{8}-(n-m+3) x^{6}+(4 n-5 m+1) x^{4}\right. \\
& \left.-(4 n-7 m+3) x^{2}+n-2 m+1\right] . \tag{3.4}
\end{align*}
$$

Proof. If $n=2 m$, using the above lemma by taking $G=S_{m}, l=m$, and $k=1$, then

$$
p(A(2 m, m) ; x)=\left(x^{2}-1\right)^{m-2}\left[x^{4}-(m+1) x^{2}+1\right] .
$$

If $n>2 m$, using Lemma 2.2 repeatedly, then

$$
\begin{aligned}
p(A(n, m) ; x) & =x p(A(n-1, m) ; x)-x^{n-2 m}\left(x^{2}-1\right)^{m-1} \\
& =x^{n-2 m} p(A(2 m, m) ; x)-(n-2 m) x^{n-2 m}\left(x^{2}-1\right)^{m-1} \\
& =x^{n-2 m}\left(x^{2}-1\right)^{m-2}\left[x^{4}-(n-m+1) x^{2}+n-2 m+1\right] .
\end{aligned}
$$

Eqs. (3.3) and (3.4) can be derived using Lemma 2.2 and Eq. (3.2) by noting that

$$
\begin{aligned}
p(B(n, m) ; x)= & x p(A(n-1, m) ; x)-x p(A(n-3, m-1) ; x), \\
p(C(n, m) ; x)= & \left(x^{2}-1\right) p(A(n-2, m-1) ; x) \\
& -x^{2} p(A(n-4, m-2) ; x) .
\end{aligned}
$$

From the above proposition, it is easy to obtain

$$
\begin{align*}
\lambda_{1}(A(n, m))= & \frac{1}{2} \sqrt{2(n-m+1)+2 \sqrt{(n-m-1)^{2}+4 m-4}} \\
= & \frac{1}{2}(\sqrt{n-m+1-2 \sqrt{n-2 m+1}} \\
& +\sqrt{n-m+1+2 \sqrt{n-2 m+1}}) \tag{3.5}
\end{align*}
$$

and for $m=2$,

$$
\begin{align*}
& p(B(n, 2) ; x)=x^{n-4}\left(x^{4}-(n-1) x^{2}+2 n-8\right), \\
& \lambda_{1}(B(n, 2))=\frac{1}{2} \sqrt{2(n-1)+2 \sqrt{n^{2}-10 n+33}} . \tag{3.6}
\end{align*}
$$

Theorem 3.3. Let T be an n-vertex tree with an m-matching, $n \geqslant 2 m$, and $T \neq$ $A(n, m)$. Then

$$
\begin{equation*}
p(T ; x)>p(A(n, m) ; x) \quad \text { for all } x \geqslant \lambda_{1}(T) . \tag{3.7}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\lambda_{1}(T)<\frac{1}{2} & (\sqrt{n-m+1-2 \sqrt{n-2 m+1}} \\
& +\sqrt{n-m+1+2 \sqrt{n-2 m+1}}) . \tag{3.8}
\end{align*}
$$

Proof. It is sufficient to prove (3.7) by Lemma 2.1. We prove the theorem by induction on n. First suppose $n=2 m$. We prove that the theorem holds in the case of $n=2 m$ by induction on m. If $m=1,2,3$, then the theorem holds clearly by the facts that there are at most two trees with $n=2 m$ vertices and an m-matching for $m=1,2,3$.

We now suppose $m \geqslant 4$ and proceed by induction. Let T be any tree with $2 m$ vertices and with an m-matching. By Lemma $2.4, T$ has a pendant vertex v which is adjacent to a vertex w of degree 2 . Thus $v w$ is an edge of T and there is a unique vertex $u \neq v$ such that $u w$ is also an edge of T. Let T^{\prime} be the tree obtained from T by removing vertices v and w and edges $v w$ and $u w$, namely, $T^{\prime}=T-v-w$. Then T^{\prime} is a tree with $2(m-1)$ vertices and with an $(m-1)$-matching. By the induction assumption,

$$
\begin{equation*}
p\left(T^{\prime} ; x\right) \geqslant p(A(2(m-1), m-1) ; x) \quad \text { for all } x \geqslant \lambda_{1}\left(T^{\prime}\right) . \tag{3.9}
\end{equation*}
$$

By Lemma 2.2, we have

$$
\begin{align*}
& p(T ; x)=p(T-u w ; x)-p(T-w-u ; x) \\
& =\left(x^{2}-1\right) p\left(T^{\prime} ; x\right)-x p(T-v-w-u ; x), \\
& p(A(2 m, m) ; x)=\left(x^{2}-1\right) p(A(2(m-1), m-1) ; x) \\
& -x p\left(K_{1} \cup(m-2) K_{2} ; x\right), \tag{3.10}\\
& p(T ; x)-p(A(2 m, m) ; x) \\
& =\left(x^{2}-1\right)\left[p\left(T^{\prime} ; x\right)-p(A(2(m-1), m-1) ; x)\right] \\
& +x\left[p\left(K_{1} \cup(m-1) K_{2} ; x\right)-p(T-v-w-u ; x)\right] .
\end{align*}
$$

Since $T-v-w-u$ is a proper subgraph of T^{\prime} and T^{\prime} is a proper subgraph of $T, \lambda_{1}(T-v-w-u)<\lambda_{1}\left(T^{\prime}\right)<\lambda_{1}(T)$. Since T^{\prime} has an $(m-1)$-matching and
$2 n-3$ vertices, $T-v-w-u=T^{\prime}-u$ has an ($m-2$)-matching and $K_{1} \cup(m-2)$ K_{2} is a proper spanning subgraph of $T-v-w-u$ when $T \neq A(2 m, m)$. By Lemma 2.3 we have $\lambda_{1}(T-v-w-u)>\lambda_{1}\left(K_{1} \cup(m-2) K_{2}\right)$ and

$$
\begin{aligned}
& p\left(K_{1} \cup(m-2) K_{2} ; x\right)>p(T-v-w-u ; x) \\
& \quad \text { for all } x>\lambda_{1}(T-v-w-u) .
\end{aligned}
$$

Hence by Eqs (3.9) and (3.10), we have

$$
p(T ; x)>p(A(2 m, m) ; x) \quad \text { for all } x \geqslant \lambda_{1}(T) .
$$

This completes the induction on m and proves the theorem when $n=2 m$.
We now suppose $n>2 m$ and proceed by induction on n. Let T be any tree with n vertices and with an m-matching. By Lemma 2.6, T has an m-matching M and a pendant vertex v such that M does not saturate v. Let u be the unique vertex such that $v u$ is a pendant edge of T. Let T^{\prime} be the tree obtained from T by removing vertex v and edge $v u$, namely, $T^{\prime}=T-v$. Then T^{\prime} is a tree with $n-1$ vertices and with an m-matching. By the induction assumption,

$$
\begin{equation*}
p\left(T^{\prime} ; x\right) \geqslant p(A(n-1, m) ; x) \quad \text { for all } x \geqslant \lambda_{1}\left(T^{\prime}\right) . \tag{3.11}
\end{equation*}
$$

By Lemma 2.2, we have

$$
\begin{align*}
& p(T ; x)=p(T-v u ; x)-p(T-v-u ; x) \\
& =x p\left(T^{\prime} ; x\right)-p(T-v-u ; x), \\
& p(A(n, m) ; x)=x p(A(n-1, m) ; x) \\
& -p\left((n-2 m) K_{1} \cup(m-1) K_{2} ; x\right), \tag{3.12}\\
& p(T ; x)-p(A(n, m) ; x) \\
& =x\left[p\left(T^{\prime} ; x\right)-p(A(n-1, m) ; x)\right] \\
& +\left[p\left((n-2 m) K_{1} \cup(m-1) K_{2} ; x\right)-p(T-v-u ; x)\right] .
\end{align*}
$$

Since $T-v-u=T^{\prime}-u$ is a proper subgraph of T^{\prime} and T^{\prime} is a proper subgraph of $T, \lambda_{1}(T-v-u)<\lambda_{1}\left(T^{\prime}\right)<\lambda_{1}(T)$. Since T^{\prime} has an m-matching, $T-$ $v-u=T^{\prime}-u$ has an $(m-1)$-matching and $(n-2 m) K_{1} \cup(m-1) K_{2}$ is a proper spanning subgraph of $T-v-u$ when $T \neq A(n, m)$. By Lemma 2.3, we have $\lambda_{1}(T-v-u)>\lambda_{1}\left((n-2 m) K_{1} \cup(m-1) K_{2}\right)$ and

$$
\begin{aligned}
& p\left((n-2 m) K_{1} \cup(m-1) K_{2} ; x\right)>p(T-w-u ; x) \\
& \quad \text { for all } x \geqslant \lambda_{1}(T-v-u) .
\end{aligned}
$$

Hence by Eqs (3.11) and (3.12), we have

$$
p(T ; x) \geqslant p(A(n, m) ; x) \quad \text { for all } x \geqslant \lambda_{1}(T) .
$$

This completes the proof of Theorem 3.3 by induction.

Let T be a tree which is not the star graph. Then T has an 2-matching. Taking $m=2$, we obtain:

Corollary 3.4 [5]. Let T be an n-vertex tree and $T \neq S_{n}$. Then

$$
\begin{equation*}
\lambda_{1}(T) \leqslant \frac{1}{2} \sqrt{2(n-1)+2 \sqrt{n^{2}-6 n+13}}, \tag{3.13}
\end{equation*}
$$

and equality holds if and only if $T=A(n, 2)$.
Corollary 3.5 [8]. Let T be an n-vertex $(n=2 m)$ tree with a perfect matching. Then

$$
\begin{equation*}
\lambda_{1}(T) \leqslant \frac{1}{2}(\sqrt{m-1}+\sqrt{m+3}) \tag{3.14}
\end{equation*}
$$

and equality holds if and only if $T=A(2 m, m)$.
Theorem 3.6. Let T be an n-vertex tree with an m-matching, $n>2 m, T \neq A(n, m)$ and $T \neq B(n, m)$. Then

$$
\begin{equation*}
p(T ; x)>p(B(n, m) ; x) \quad \text { for all } x \geqslant \lambda_{1}(T), \tag{3.15}
\end{equation*}
$$

and $\lambda_{1}(T)<\lambda_{1}(B(n, m))$.
Proof. It is sufficient to prove (3.15) by Lemma 2.1. We prove the theorem by induction on n. First we suppose $n=2 m+1$. We prove that theorem holds in the case of $n=2 m+1$ by induction on m. If $m=1,2$, then the theorem holds clearly. If $m=3$, there are six graphs with seven vertices and with a 3-matching, and the theorem holds (see Fig. 2).

We now suppose $m \geqslant 4$ and proceed by induction. Let T be any tree with $2 m+1$ vertices and with an m-matching. By Lemma $2.5, T$ has a pendant vertex v which is adjacent to a vertex w of degree 2 . Thus $v w$ is an edge of T and there is a unique vertex $u \neq v$ such that $u w$ is also an edge of T. Let T^{\prime} be the tree obtained from T by removing vertices v and w and edges $v w$ and $u w$, namely, $T^{\prime}=T-v-w$. Then T^{\prime} is a tree with $2(m-1)+1$ vertices and with an $(m-1)$-matching.

If $T^{\prime}=A(2 m-1, m-1)$, then T must be isomorphic to any of the graphs in Fig. 3, because $T \neq A(2 m+1, m), B(2 m+1, m)$. Therefore we may choose other vertices v^{\prime}, w^{\prime} instead of v, w such that $T-v^{\prime}-w^{\prime}=T^{\prime} \neq A(2 m-1, m-1)$. Thus we may always assume that $T-v-w=T^{\prime} \neq A(2 m-1, m-1)$.

Fig. 2. Trees with seven vertices and a 3-matching.

Fig. 3.

By the induction assumption,

$$
\begin{equation*}
p\left(T^{\prime} ; x\right) \geqslant p(B(2(m-1)+1, m-1) ; x) \quad \text { for all } x \geqslant \lambda_{1}\left(T^{\prime}\right) \tag{3.16}
\end{equation*}
$$

By Lemma 2.2 we have

$$
\begin{align*}
p(T ; x)= & p(T-w u ; x)-p(T-w-u ; x) \\
= & \left(x^{2}-1\right) p\left(T^{\prime} ; x\right)-x p(T-v-w-u ; x), \tag{3.17}\\
p(B(2 m+1, m) ; x)= & \left(x^{2}-1\right) p(B(2 m-1, m-1) ; x) \\
& \quad-x p\left(\left(K_{1} \cup P_{3} \cup(m-3) K_{2} ; x\right) .\right. \tag{3.18}
\end{align*}
$$

Since $T-v-w-u$ is a proper subgraph of T^{\prime} and T^{\prime} is a proper subgraph of $T, \lambda_{1}(T-v-w-u)<\lambda_{1}\left(T^{\prime}\right)<\lambda_{1}(T)$. Since T^{\prime} has an ($m-1$)-matching and $2 m-1$ vertices, $T-v-w-u=T^{\prime}-u$ has an ($m-2$)-matching and $2 m-2$ vertices. If $K_{1} \cup P_{3} \cup(m-3) K_{2}$ is a proper spanning subgraph of $T-v-w-u$, then for $x \geqslant \lambda_{1}(T)>\lambda_{1}(T-v-w-u)$, we have

$$
p\left(K_{1} \cup P_{3} \cup(m-3) K_{2} ; x\right)>p(T-v-w-u ; x) .
$$

Hence

$$
\begin{aligned}
& p(T ; x)-p(B(2 m+1, m) ; x) \\
& \quad=\left(x^{2}-1\right)\left[p\left(T^{\prime} ; x\right)-p(B(2(m-1)+1, m-1) ; x)\right] \\
& \quad+x\left[p\left(K_{1} \cup P_{3} \cup(m-3) K_{2} ; x\right)-p(T-v-w-u ; x)\right]>0 .
\end{aligned}
$$

If $K_{1} \cup P_{3} \cup(m-3) K_{2}$ is not a proper spanning subgraph of $T-v-w-u$, then $T-v-w-u$ must be isomorphic to any of the graphs in Fig 4. Here $T^{\prime \prime}$ is a forest with perfect matching and at least one connected component C has more than four vertices. By Lemma 2.4, C has at least two pendant vertices which are adjacent to vertices of degree 2 . Therefore T must be isomorphic to $A(2 m+1, m), B(2 m+$ $1, m)$ or any of the graphs in Fig. 5.

For the graph in Fig. 5(a), we have $T-v-w-u=K_{1} \cup P_{3} \cup(m-3) K_{2}$. Thus for $x \geqslant \lambda_{1}(T)$, we have

Fig. 4.

Fig. 5.

$$
\begin{aligned}
& p(T ; x)-p(B(2 m+1, m) ; x) \\
& \quad=\left(x^{2}-1\right)\left[p\left(T^{\prime} ; x\right)-p(B(2(m-1)+1, m-1) ; x)\right]>0 .
\end{aligned}
$$

For the graphs in Fig. 5(b) and (c), $T-v-w-u=2 K_{2} \cup P_{4} \cup(m-4) K_{2}$. Since $p\left(P_{4} ; x\right)=x p\left(P_{3} ; x\right)-p\left(P_{2} ; x\right)$ and $p\left(P_{2} ; x\right)=x^{2}-1$,

$$
\begin{aligned}
& p\left(K_{1} \cup P_{3} \cup(m-3) K_{2} ; x\right)-p(T-v-w-u ; x) \\
& \quad=x p\left(P_{3} ; x\right)\left(x^{2}-1\right)^{m-3}-x^{2} p\left(P_{4} ; x\right)\left(x^{2}-1\right)^{m-4} \\
& \quad=\left(x^{2}-1\right)^{m-4}\left[\left(x^{2}-1\right)^{2}-p\left(P_{4} ; x\right)\right] .
\end{aligned}
$$

Thus for $x \geqslant \lambda_{1}(T)$, we have

$$
\begin{aligned}
p(T & ; x)-p(B(2 m+1, m) ; x) \\
= & \left(x^{2}-1\right)\left[p\left(T^{\prime} ; x\right)-p(B(2(m-1)+1, m-1) ; x)\right] \\
& +x\left(x^{2}-1\right)^{m-4}\left[\left(x^{2}-1\right)^{2}-p\left(P_{4} ; x\right)\right]>0 .
\end{aligned}
$$

For the graph in Fig. 5(d), since the component C of $T^{\prime \prime}$ has two pendant vertices which are adjacent to vertices of degree 2 , one may replace vertices v, u, w by v_{1}, w_{1}, u_{1}, then $K_{1} \cup P_{3} \cup(m-3) K_{2}$ is a proper spanning subgraph of $T-$ $v_{1}-w_{1}-u_{1}$ and the result holds from the previous proof. Thus, we have proven $p(T ; x)>p(B(2 m+1, m) ; x)$ holds for all $x \geqslant \lambda_{1}(T)$.

This completes the induction on m and proves the theorem when $n=2 m+1$.
We now suppose $n>2 m+1$ and proceed by induction on n. Let T be any tree with n vertices and with an m-matching. By Lemma 2.6, T has an m-matching M and a pendant vertex v such that M does not saturate v. Let u be the unique vertex such that $v u$ is a pendant edge. Let T^{\prime} be the tree obtained from T by removing vertex v and edge $v u$, namely, $T^{\prime}=T-v$. Then T^{\prime} is a tree with $n-1$ vertices and with an m-matching.

Fig. 6.

Case 1. If T^{\prime} is isomorphic to $A(n-1, m)$, then T must be isomorphic to one of the graphs in Fig. 6 since $T \neq A(n, m), B(n, m)$.

Thus $T-v-u$ has a proper spanning subgraph $K_{1} \cup A(n-3, m-1)$. By Lemma 2.3, we have $\lambda_{1}(T-v-u)>\lambda_{1}\left(K_{1} \cup A(n-3, m-1)\right)$ and

$$
p\left(K_{1} \cup A(n-3, m-1) ; x\right)>p(T-v-u ; x) \quad \text { for all } x \geqslant \lambda_{1}(T-v-u) .
$$

By Lemma 2.2, we have

$$
\begin{aligned}
p(T ; x) & =p(T-v u ; x)-p(T-v-u ; x) \\
& =x p(A(n-1, m) ; x)-p(T-v-u ; x)
\end{aligned} \quad \begin{aligned}
& p(B(n, m) ; x)=x p(A(n-1, m) ; x)-p\left(K_{1} \cup A(n-3, m-1) ; x\right) .
\end{aligned}
$$

Since $T-v-u=T^{\prime}-u$ is a proper subgraph of T^{\prime} and T^{\prime} is a proper subgraph of $T, \lambda_{1}(T-v-u)<\lambda_{1}\left(T^{\prime}\right)<\lambda_{1}(T)$. Hence, by the above three equalities, we have

$$
p(B(n, m) ; x) \leqslant p(T ; x) \quad \text { for all } x \geqslant \lambda_{1}(T)
$$

Case 2. If $T^{\prime}=T-v$ is not isomorphic to $A(n-1, m)$, then by the induction assumption we have

$$
\begin{equation*}
p\left(T^{\prime} ; x\right) \geqslant p(B(n-1, m) ; x) \quad \text { for all } x \geqslant \lambda_{1}\left(T^{\prime}\right) \tag{3.19}
\end{equation*}
$$

By Lemma 2.2, we have

$$
\begin{align*}
& p(T ; x)=p(T-v u ; x)-p(T-v-u ; x) \\
& =x p\left(T^{\prime} ; x\right)-p(T-v-u ; x) . \\
& p(B(n, m) ; x)=x p(B(n-1, m) ; x) \\
& -p\left((n-2 m-1) K_{1} \cup P_{3} \cup(m-2) K_{2} ; x\right) . \tag{3.20}\\
& p(T ; x)-p(B(n, m) ; x) \\
& =x\left[p\left(T^{\prime} ; x\right)-p(B(n-1, m) ; x)\right] \\
& +\left[p\left((n-2 m-1) K_{1} \cup P_{3} \cup(m-1) K_{2} ; x\right)-p(T-v-u ; x)\right] .
\end{align*}
$$

Since $T-v-u=T^{\prime}-u$ is a proper subgraph of T^{\prime} and T^{\prime} is a proper subgraph of $T, \lambda_{1}(T-v-u)<\lambda_{1}\left(T^{\prime}\right)<\lambda_{1}(T)$. Since T^{\prime} has an m-matching, $T-v-u=T^{\prime}-u$ has an $(m-1)$-matching and $n-2$ vertices. Note that $(n-2 m-1) K_{1} \cup P_{3} \cup$ $(m-2) K_{2}$ is not a proper spanning subgraph of $T-v-u$ if and only if $T-v-u$

Fig. 7.

Fig. 8.
is isomorphic to any of the graphs in Fig. 7. Here $T^{\prime \prime}$ is a forest with perfect matching and at least one connected component C has more than two vertices. By Lemma 2.4, C has at least two pendant vertices which are adjacent to vertices of degree 2. Hence T must be isomorphic to $A(n, m), B(n, m)$ or one of the graphs in Fig. 8.

The component C of $T^{\prime \prime}$ has at least two pendant vertices which are adjacent to vertices of degree 2 . In both cases, Fig. 8(a) and (b), we may replace v, u by v_{1}, u_{1}. Then $(n-2 m-1) K_{1} \cup P_{3} \cup(m-2) K_{2}$ is a proper spanning subgraph of $T-v-u$.

Therefore, if $T \neq A(n, m), B(n, m)$, then using Lemma 2.3, we have $\lambda_{1}(T-v-$ $u)>\lambda_{1}\left((n-2 m-1) K_{1} \cup P_{3} \cup(m-2) K_{2}\right)$ and

$$
\begin{align*}
& p\left((n-2 m-1) K_{1} \cup P_{3} \cup(m-2) K_{2} ; x\right)>p(T-v-u ; x) \\
& \quad \text { for all } x \geqslant \lambda_{1}(T-v-u) . \tag{3.21}
\end{align*}
$$

Hence, by Eqs (3.19)-(3.21), we have

$$
p(T ; x)>p(B(n, m) ; x) \quad \text { for all } x \geqslant \lambda_{1}(T) .
$$

This completes the proof of Theorem 3.6 by induction.
In the above theorem, we obtain the following corollary by taking $m=2$.
Corollary 3.7 [5]. Let T be an n-vertex tree $(n>4)$, and $T \neq S_{n}, A(n, 2)$. Then

$$
\begin{equation*}
\lambda_{1}(T) \leqslant \frac{1}{2} \sqrt{2(n-1)+2 \sqrt{n^{2}-10 n+33}}, \tag{3.22}
\end{equation*}
$$

and equality holds if and only if $T=B(n, 2)$.
The following result is concerned in trees with perfect matchings.
Theorem 3.8. Let T be a tree with $n=2 m(m \geqslant 3)$ vertices and with a perfect matching, and $T \neq A(2 m, m), C(2 m, m)$. Then

$$
\begin{equation*}
p(T ; x)>p(C(2 m, m) ; x) \quad \text { for all } x \geqslant \lambda_{1}(T) \tag{3.23}
\end{equation*}
$$

and $\lambda_{1}(T)<\lambda_{1}(C(2 m, m))$.
Proof. It is sufficient to prove (3.23). We prove the theorem by induction on m. If $m=3$, then the unique tree $T \neq A(6,3)=C(6,3)$ with six vertices and with a
perfect matching is the path P_{6}, and the theorem holds. We now suppose $m \geqslant 4$ and proceed by induction. Let T be any tree with $2 m$ vertices and with a perfect matching. By Lemma 2.4, T has a pendant vertex v which is adjacent to a vertex w of degree 2 . Thus $v w$ is an edge and there is a unique vertex $u \neq v$ such that $u w$ is also an edge of T. Let T^{\prime} be the tree obtained from T by removing vertices v and w and edges $v w$ and $u w$, namely, $T^{\prime}=T-v-w$. Then T^{\prime} is a tree with $2(m-1)$ vertices and with a perfect matching.

Case 1. If there exist vertices v, w, u satisfying the above-mentioned property and $T^{\prime}=T-v-w$ is isomorphic to $A(2(m-1), m-1)$, then by Lemma 2.2 we have

$$
\begin{align*}
& p(T ; x)=p(T-w u, x)-p(T-w-u ; x) \\
& =\left(x^{2}-1\right) p(A(2(m-1), m-1) ; x) \\
& \quad-x p(T-v-w-u ; x) \tag{3.24}\\
& \begin{aligned}
& p(C(2 m, m) ; x)=\left(x^{2}-1\right) p(A(2(m-1), m-1) ; x) \\
& \quad-x p\left(\left(K_{1} \cup A(2(m-2), m-2) ; x\right) .\right.
\end{aligned}
\end{align*}
$$

Since $T-v-w-u=T^{\prime}-u$ is a proper subgraph of T^{\prime} and T^{\prime} is a proper subgraph of $T, \lambda_{1}(T-v-w-u)<\lambda_{1}\left(T^{\prime}\right)<\lambda_{1}(T)$. Since $T^{\prime}=A(2(m-1), m-$ $1)$, and $T \neq A(2 m, m), C(2 m, m)$, the vertex u is neither the center of $T^{\prime}=$ $A(2(m-1), m-1)$ nor a vertex of degree 2 of $T^{\prime}=A(2(m-1), m-1)$. Hence u is a vertex of degree 1 in T^{\prime}, and $T^{\prime}-u$ is connected and it has a proper spanning subgraph $K_{1} \cup A(2(m-2), m-2)$ (see Fig. 9).

By Lemma 2.3 we have $\lambda_{1}(T-v-w-u)>\lambda_{1}\left(K_{1} \cup A(2(m-2), m-2)\right)$ and

$$
\begin{align*}
& p\left(K_{1} \cup A(2(m-2), m-2) ; x\right)>p(T-v-w-u ; x) \\
& \quad \text { for all } x \geqslant \lambda_{1}(T-v-w-u) . \tag{3.26}
\end{align*}
$$

Hence, by Eqs. (3.24)-(3.26), we have

$$
p(T ; x)>p(C(2 m, m) ; x) \quad \text { for all } x \geqslant \lambda_{1}(T) .
$$

Case 2. If $T^{\prime}=T-v-w$ is not isomorphic to $A(2(m-1), m-1)$ for any vertices v, w, u in which v is a pendant vertex and w has only two neighbors v, u, then by the induction assumption, we have

$$
\begin{equation*}
p\left(T^{\prime} ; x\right) \geqslant p(C(2(m-1) ; m-1) ; x) \quad \text { for all } x \geqslant \lambda_{1}\left(T^{\prime}\right) . \tag{3.27}
\end{equation*}
$$

By Lemma 2.2, we have

Fig. 9.

$$
\begin{align*}
& p(T ; x)=p(T-w u ; x)-p(T-w-u ; x) \\
& =\left(x^{2}-1\right) p\left(T^{\prime} ; x\right)-x p(T-v-w-u ; x), \\
& p(C(2 m, m) ; x)=\left(x^{2}-1\right) p(C(2(m-1), m-1) ; x) \\
& -x p\left(K_{1} \cup P_{4} \cup(m-4) K_{2} ; x\right), \tag{3.28}\\
& p(T ; x)-p(C(2 m, m) ; x) \\
& =\left(x^{2}-1\right)\left[p\left(T^{\prime} ; x\right)-p(C(2(m-1), m-1) ; x)\right] \\
& +x\left[p\left(K_{1} \cup P_{4} \cup(m-4) K_{2} ; x\right)-p(T-v-w-u ; x)\right] .
\end{align*}
$$

Since $T-v-w-u=T^{\prime}-u$ is a proper subgraph of T^{\prime} and T^{\prime} is a proper subgraph of $T, \lambda_{1}(T-v-w-u)<\lambda_{1}\left(T^{\prime}\right)<\lambda_{1}(T)$. Since T^{\prime} has an $(m-1)-$ matching, $T-v-w-u=T^{\prime}-u$ has an $(m-2)$-matching and $n-3=2(m-$ $2)+1$ vertices. Thus $K_{1} \cup(m-2) K_{2}$ is a spanning subgraph of $T-v-u-w$. Hence $K_{1} \cup P_{4} \cup(m-4) K_{2}$ is not a proper spanning subgraph of $T-v-w-u$ if and only if $T-v-w-u$ is isomorphic to any of the graphs in Fig 10.

Therefore T must be isomorphic to either of an $A(2 m, m), C(2 m, m)$ or any of the graphs in Fig. 11.

Among graphs in Fig. 11, (a) is impossible since it has no m-matching, (b) and (c) are impossible because we may choose vertices v_{1}, w_{1} instead of v, w such that $T-v_{1}-w_{1}$ is isomorphic to $A(2(m-1), m-1)$. Hence $K_{1} \cup P_{4} \cup(m-4) K_{2}$ is a proper spanning subgraph of $T-v-w-u$ when $T \neq A(2 m, m), C(2 m, m)$. By Lemma 2.3 we have $\lambda_{1}(T-v-w-u)>\lambda_{1}\left(K_{1} \cup P_{4} \cup(m-4) K_{2}\right)$ and

$$
\begin{align*}
& p\left(K_{1} \cup P_{4} \cup(m-4) K_{2} ; x\right)>p(T-v-w-u ; x) \\
& \quad \text { for all } x \geqslant \lambda_{1}(T-v-w-u) . \tag{3.29}
\end{align*}
$$

Hence, using Eqs. (3.27)-(3.29), we have

$$
p(T ; x)>p(C(2 m, m) ; x) \quad \text { for all } x \geqslant \lambda_{1}(T) .
$$

This completes the proof of the theorem.

Fig. 10.

(a)

(b)

(c)

Fig. 11.

$$
T_{1}, m=3
$$

$T_{2}, m=5$

Fig. 12.

Table 1

	$\sqrt{n-1}$	Th. 3.3	Cor. 3.4	Cor. 3.5	Th. 3.6	Cor. 3.7	Th. 3.8	λ_{1}
T_{1}	3	2.52433	2.8530		2.433	2.71579		2.367
T_{2}	3	2.52433	2.8530	2.4142		2.71579	2.2850	2.250

We conclude this paper by the example shown in Fig. 12 which compares our new bounds with the old known bounds. Let $n=10$, and T_{1} and T_{2} be two trees with 10 vertices and with 3 -matching and 5-matching, respectively.

Table 1 gives bounds in terms of our results and known results, and λ_{1} is the factual value of $\lambda_{1}(T)$.

In general, the bound in terms of Theorem 3.3, that is,

$$
\frac{1}{2} \sqrt{2(n-m+1)+2 \sqrt{(n-m-1)^{2}+4 m-4}}
$$

is a decreasing function of m. So, for any tree $T \neq S_{n}$, and it is always better than known bounds $\frac{1}{2} \sqrt{2(n-1)+2 \sqrt{n^{2}-6 n+13}}$ (i.e., Corollary 3.4.)

Acknowledgement

The authors would like to thank the referee for giving many valuable comments and suggestions on improving this paper.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, New York, 1976.
[2] C. An, Bounds on the second largest eigenvalue of a tree with perfect matchings, Linear Algebra Appl. 283 (1998) 247-255.
[3] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
[4] D. Cvetković, P. Rowlinson, The largest eigenvalue of a graph: a survey, Linear and Multilinear Algebra 28 (1990) 3-33.
[5] M. Hofmeister, On the two largest eigenvalues of trees, Linear Algebra Appl. 260 (1997) 43-59.
[6] Q. Li, K.Q. Feng, On the largest of eigenvalues of graphs, Acta. Math. Appl. Sinica 2 (1979) 167-175 (in Chinese).
[7] J.Y. Shao, Y, Hong, Bounds on the smallest positive eigenvalue of trees with a perfect matching, Sci. Bull. 18 (1991) 1361-1364 (in Chinese).
[8] G.H. Xu, On the spectral radius of trees with perfect matchings, in: Combinatorics and Graph Theory, World Scientific, Singapore, 1997.

[^0]: This project was supported by National Natural Science Foundation of China (No. 19971086).

 * Corresponding author.

 E-mail addresses: yphou@hunnu.edu.cn (Y. Hou), lijs@ustc.edu.cn (J. Li).

