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Abstract

Very little is known about upper bound for the largest eigenvalue of a tree with a given size
of matching. In this paper, we find some upper bounds for the largest eigenvalue of a tree in
terms of the number of vertices and the size of matchings, which improve some known results.
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1. Introduction

Let G be a connected graph with n vertices and A(G) the adjacency matrix of
G. Then A(G) is irreducible and symmetric. All eigenvalues of G are real, and the
largest eigenvalue of G is one multiplicity. Without loss of generality, we can assume
that λ1(G) > λ2(G) � λ3(G) � · · · � λn(G) are all eigenvalues of G. When G is a
bipartite graph, its eigenvalues have physical interpretations in the quantum chemi-
cal theory, so it is significant and necessary to investigate the relations between the
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graph-theoretic properties of G and its eigenvalues. Up to now, the eigenvalues of
a tree T with a perfect matching have been studied by several authors (see [2,7,8]).
However, when a tree has no perfect matching but has an m-matching M , namely, M
consists of m mutually independent edges, very little is known about the eigenvalues
of a tree T with an m-matching. The purpose of this paper is to find some upper
bounds for the largest eigenvalues of trees in terms of the number of vertices and the
size of matchings.

Let T be a tree with n vertices. The classical upper bound of λ1(T ) is

λ1(T ) �
√

n − 1 (1.1)

with equality if and only if T is the star graph Sn. Star graph Sn with n vertices can be
characterized within the set of all trees with n vertices by the property: each matching
consists of only one edge. Hence in order to improve (1.1) for trees, it is natural to
impose some upper bounds on the size of a matching of trees. In this paper, we will
refine (1.1) for the trees with an m-matching.

We denote by Sn, Kn, and Pn the star graph, the complete graph, and the path
graph with n vertices, respectively, and denote by rKs the disjoint union of r cop-
ies of Ks. We denote by G ∪ H the graph whose components are G and H. Other
graph-theoretic notations may refer to [1].

2. Some lemmas

Denote the characteristic polynomial of a graph G by p(G; x), and recall that the
largest eigenvalue of G is just the largest root of the equation p(G; x) = 0. There-
fore,

p(G; x) > 0 for all x > λ1(G). (2.1)

As an immediate consequence of (2.1), we have the following elementary but useful
statement.

Lemma 2.1 [3,4]. Let F and H be two graphs. If p(F ; x) < p(H ; x) for x � λ1(H),

then λ1(F ) > λ1(H).

The following result is often used to calculate the characteristic polynomials of
trees.

Lemma 2.2 [3]. Let T be a tree and e = uv be an edge of T. Then

p(T ; x) = p(T − e; x) − p(T − u − v; x). (2.2)

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). A
graph G′ is a subgraph of G if V (G′) ⊆ V (G), and E(G′) ⊆ E(G). A subgraph G′
of G is called proper if G′ 
= G. A spanning subgraph of G is a subgraph G′ with
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V (G′) = V (G). Let G be a connected graph, and G′ be a proper spanning subgraph
of G. By the well-known Frobenius theorem, we have λ1(G) > λ1(G

′). Moreover,
the following lemma holds.

Lemma 2.3 [6].
(i) Let G be a connected graph, and G′ be a proper spanning subgraph of G. Then

p(G′; x) > p(G; x) for all x � λ1(G).

(ii) Let G′, H ′ be spanning subgraphs of connected graphs G and H, respectively,
and λ1(G) � λ1(H), and G′ is a proper subgraph of G. Then

p(G′ ∪ H ′; x) > p(G ∪ H ; x) for all λ � λ1(G).

Two edges of a graph are said to be independent if they are not incident with a
common vertex. An m-matching of a graph G is a set of m mutually independent
edges. It is clear that every m-matching is a subgraph mK2 of G. In this paper, we
say a tree T with an m-matching means that T has at least an m-matching, and T may
or may not have a matching whose size is more than m. A matching M saturates
a vertex v, and v is said to be M-saturated if some edge of M is incident with v;
otherwise, v is M-unsaturated. A matching M is said to be perfect if every vertex of
G is M-saturated. It is easy to prove by induction that a perfect matching of a tree is
unique when it exists. The following three lemmas are often used to prove our main
results in the following section.

Lemma 2.4. Let T be a tree with n (n > 2) vertices and with a perfect matching.
Then T has at least two pendant vertices such that they are adjacent to vertices of
degree 2, respectively.

Proof. First, we root T at a vertex r and choose a pendant vertex v furthest from r.
Let e = vw be a pendant edge. If the degree of w is not 2, there would be a pendant
vertex u 
= v joined to w and T cannot have a perfect matching. Second we root T at
the vertex v and choose a pendant vertex x furthest from v. As the above proof, x is
also adjacent to a vertex of degree 2. �

By Lemma 2.4 we have:

Lemma 2.5. Let T be an n-vertex tree with an m-matching, and n = 2m + 1. Then
T has a pendant vertex which is adjacent to a vertex of degree 2.

Lemma 2.6. Let T be an n-vertex tree with an m-matching where n > 2m. Then
there is an m-matching M and a pendant vertex v such that M does not saturate v.

Proof. For n � 3 the result clearly holds. We assume that n > 3 and proceed by
induction. Consider an m-matching M̄ of T . Root T at a vertex r and let v be a
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pendant vertex furthest from r. Let vw be the pendant edge which is incident with v.

If the edge vw does not belong to M̄, then the conclusion follows. So we may assume
that the edge vw belongs to M̄. If the degree of w is not 2, then there is a pendant
vertex v̄ 
= v joined to w which is M̄-unsaturated. Thus we may assume the degree
of w is 2. Let ww′ be the edge with w′ 
= v, and let T ′ be the tree obtained from T by
removing vertices v and w and edges vw and ww′. Then T ′ has n − 2 = n′ vertices
and an m′-matching, where m′ = m − 1. Since n′ > 2m′, it follows by induction
that T ′ has an m′-matching M ′ and a pendant vertex v′ which is M ′-unsaturated. If
v′ 
= w′, then M ′ ∪ {vw} is an m-matching of T not saturating the pendant vertex v′
of T . If v′ = w′, then M ′ ∪ {v′w} is an m-matching of T not saturating the pendant
vertex v. Hence the lemma holds by induction. �

3. The largest eigenvalues of trees with a given size of matching

Let n and m be positive integers and n � 2m. We define a tree A(n, m) with n
vertices as follows: A(n, m) is obtained from the star graph Sn−m+1 with n − m + 1
vertices by attaching a pendant edge to each of certain m − 1 non-central vertices
of Sn−m+1. We call A(n, m) a spur and note that it has an m-matching. The center
of A(n, m) is the center of the star Sn−m+1. For n > 2m, let B(n, m) be the graph
obtained from the spur A(n − 1, m) by attaching a pendant edge to one vertex of
degree 2. Then B(n, m) has an m-matching. The center of B(n, m) is the center
of the spur A(n − 1, m). For m � 3, let C(n, m) be the graph obtained from the
spur A(n − 2, m − 1) by attaching a path of length 2 to one vertex of degree 2.
Then C(n, m) has an m-matching. The center of C(n, m) is the center of the spur
A(n − 2, m − 1). In Fig. 1 we have drawn A(14, 6), B(14, 6) and C(14, 6).

We now compute the characteristic polynomials of graphs A(n, m), B(n, m), and
C(n, m), we need the following lemma [3, p. 60].

Lemma 3.1. Let H be a graph obtained from the graph G with vertex-set
{x1, x2, . . . , xl} in the following way:
(i) To each vertex xi of G a set Vi of k new isolated vertices is added; and

(ii) xi is joined by an edge to each of the k vertices of Vi (i = 1, 2, . . . , l).
Then

Fig. 1. Trees A(14, 6), B(14, 6) and C(14, 6).
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p(H ; x) = xlkp

(
G; x − k

x

)
. (3.1)

Proposition 3.2.

p(A(n, m); x) = xn−2m(x2 − 1)m−2

×[
x4 − (n − m + 1)x2 + n − 2m + 1

]
, (3.2)

p(B(n, m); x) = xn−2m(x2 − 1)m−3[x6 − (n − m + 2)x4+ (3n − 4m −1)x2

−2(n − 2m)
]
, (3.3)

p(C(n, m); x) = xn−2m(x2 − 1)m−4

×[
x8 − (n − m + 3)x6 + (4n − 5m + 1)x4

−(4n − 7m + 3)x2 + n − 2m + 1
]
. (3.4)

Proof. If n = 2m, using the above lemma by taking G = Sm, l = m, and k = 1,

then

p(A(2m, m); x) = (x2 − 1)m−2[x4 − (m + 1)x2 + 1
]
.

If n > 2m, using Lemma 2.2 repeatedly, then

p(A(n, m); x) = xp(A(n − 1, m); x) − xn−2m(x2 − 1)m−1

= xn−2mp(A(2m, m); x) − (n − 2m)xn−2m(x2 − 1)m−1

= xn−2m(x2 − 1)m−2[x4 − (n − m + 1)x2 + n − 2m + 1
]
.

Eqs. (3.3) and (3.4) can be derived using Lemma 2.2 and Eq. (3.2) by noting that

p(B(n, m); x) = xp(A(n − 1, m); x) − xp(A(n − 3, m − 1); x),

p(C(n, m); x) = (x2 − 1)p(A(n − 2, m − 1); x)

−x2p(A(n − 4, m − 2); x). �

From the above proposition, it is easy to obtain

λ1(A(n, m)) = 1

2

√
2(n − m + 1) + 2

√
(n − m − 1)2 + 4m − 4

= 1

2

(√
n − m + 1 − 2

√
n − 2m + 1

+
√

n − m + 1 + 2
√

n − 2m + 1

)
, (3.5)
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and for m = 2,

p(B(n, 2); x) = xn−4(x4 − (n − 1)x2 + 2n − 8),

λ1(B(n, 2)) = 1

2

√
2(n − 1) + 2

√
n2 − 10n + 33. (3.6)

Theorem 3.3. Let T be an n-vertex tree with an m-matching, n � 2m, and T 
=
A(n, m). Then

p(T ; x) > p(A(n, m); x) for all x � λ1(T ). (3.7)

Therefore

λ1(T ) <
1

2

(√
n − m + 1 − 2

√
n − 2m + 1

+
√

n − m + 1 + 2
√

n − 2m + 1

)
. (3.8)

Proof. It is sufficient to prove (3.7) by Lemma 2.1. We prove the theorem by in-
duction on n. First suppose n = 2m. We prove that the theorem holds in the case
of n = 2m by induction on m. If m = 1, 2, 3, then the theorem holds clearly by the
facts that there are at most two trees with n = 2m vertices and an m-matching for
m = 1, 2, 3.

We now suppose m � 4 and proceed by induction. Let T be any tree with 2m

vertices and with an m-matching. By Lemma 2.4, T has a pendant vertex v which is
adjacent to a vertex w of degree 2. Thus vw is an edge of T and there is a unique
vertex u 
= v such that uw is also an edge of T. Let T ′ be the tree obtained from T by
removing vertices v and w and edges vw and uw, namely, T ′ = T − v − w. Then
T ′ is a tree with 2(m − 1) vertices and with an (m − 1)-matching. By the induction
assumption,

p(T ′; x) � p(A(2(m − 1), m − 1); x) for all x � λ1(T
′). (3.9)

By Lemma 2.2, we have

p(T ; x) = p(T − uw; x) − p(T − w − u; x)

= (x2 − 1)p(T ′; x) − xp(T − v − w − u; x),

p(A(2m, m); x) = (x2 − 1)p(A(2(m − 1), m − 1); x)

−xp(K1 ∪ (m − 2)K2; x),

p(T ; x) − p(A(2m, m); x)

= (x2 − 1)
[
p(T ′; x) − p(A(2(m − 1), m − 1); x)

]
+x

[
p(K1 ∪ (m − 1)K2; x) − p(T − v − w − u; x)

]
.

(3.10)

Since T − v − w − u is a proper subgraph of T ′ and T ′ is a proper subgraph of
T , λ1(T − v − w − u) < λ1(T

′) < λ1(T ). Since T ′ has an (m − 1)-matching and
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2n−3 vertices, T − v − w − u = T ′−u has an (m−2)-matching and K1 ∪ (m−2)

K2 is a proper spanning subgraph of T − v − w − u when T 
= A(2m, m). By
Lemma 2.3 we have λ1(T − v − w − u) > λ1(K1 ∪ (m − 2)K2) and

p(K1 ∪ (m − 2)K2; x) > p(T − v − w − u; x)

for all x > λ1(T − v − w − u).

Hence by Eqs (3.9) and (3.10), we have

p(T ; x) > p(A(2m, m); x) for all x � λ1(T ).

This completes the induction on m and proves the theorem when n = 2m.

We now suppose n > 2m and proceed by induction on n. Let T be any tree with
n vertices and with an m-matching. By Lemma 2.6, T has an m-matching M and a
pendant vertex v such that M does not saturate v. Let u be the unique vertex such that
vu is a pendant edge of T . Let T ′ be the tree obtained from T by removing vertex v

and edge vu, namely, T ′ = T − v. Then T ′ is a tree with n − 1 vertices and with an
m-matching. By the induction assumption,

p(T ′; x) � p(A(n − 1, m); x) for all x � λ1(T
′). (3.11)

By Lemma 2.2, we have

p(T ; x) = p(T − vu; x) − p(T − v − u; x)

= xp(T ′; x) − p(T − v − u; x),

p(A(n, m); x) = xp(A(n − 1, m); x)

−p((n − 2m)K1 ∪ (m − 1)K2; x),

p(T ; x) − p(A(n, m); x)

= x
[
p(T ′; x) − p(A(n − 1, m); x)

]
+[

p((n − 2m)K1 ∪ (m − 1)K2; x) − p(T − v − u; x)
]
.

(3.12)

Since T − v − u = T ′ − u is a proper subgraph of T ′ and T ′ is a proper sub-
graph of T , λ1(T − v − u) < λ1(T

′) < λ1(T ). Since T ′ has an m-matching, T −
v − u = T ′ − u has an (m − 1)-matching and (n − 2m)K1 ∪ (m − 1)K2 is a prop-
er spanning subgraph of T − v − u when T 
= A(n, m). By Lemma 2.3, we have
λ1(T − v − u) > λ1((n − 2m)K1 ∪ (m − 1)K2) and

p((n − 2m)K1 ∪ (m − 1)K2; x) > p(T − w − u; x)

for all x � λ1(T − v − u).

Hence by Eqs (3.11) and (3.12), we have

p(T ; x) � p(A(n, m); x) for all x � λ1(T ).

This completes the proof of Theorem 3.3 by induction. �
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Let T be a tree which is not the star graph. Then T has an 2-matching. Taking
m = 2, we obtain:

Corollary 3.4 [5]. Let T be an n-vertex tree and T 
= Sn. Then

λ1(T ) � 1

2

√
2(n − 1) + 2

√
n2 − 6n + 13, (3.13)

and equality holds if and only if T = A(n, 2).

Corollary 3.5 [8]. Let T be an n-vertex (n = 2m) tree with a perfect matching. Then

λ1(T ) � 1

2

(√
m − 1 + √

m + 3
)

, (3.14)

and equality holds if and only if T = A(2m, m).

Theorem 3.6. Let T be an n-vertex tree with an m-matching, n > 2m, T 
= A(n, m)

and T 
= B(n, m). Then

p(T ; x) > p(B(n, m); x) for all x � λ1(T ), (3.15)

and λ1(T ) < λ1(B(n, m)).

Proof. It is sufficient to prove (3.15) by Lemma 2.1. We prove the theorem by
induction on n. First we suppose n = 2m + 1. We prove that theorem holds in the
case of n = 2m + 1 by induction on m. If m = 1, 2, then the theorem holds clearly.
If m = 3, there are six graphs with seven vertices and with a 3-matching, and the
theorem holds (see Fig. 2).

We now suppose m � 4 and proceed by induction. Let T be any tree with 2m + 1
vertices and with an m-matching. By Lemma 2.5, T has a pendant vertex v which is
adjacent to a vertex w of degree 2. Thus vw is an edge of T and there is a unique
vertex u 
= v such that uw is also an edge of T. Let T ′ be the tree obtained from T by
removing vertices v and w and edges vw and uw, namely, T ′ = T − v − w. Then
T ′ is a tree with 2(m − 1) + 1 vertices and with an (m − 1)-matching.

If T ′ = A(2m − 1, m − 1), then T must be isomorphic to any of the graphs in
Fig. 3, because T 
= A(2m + 1, m), B(2m + 1, m). Therefore we may choose oth-
er vertices v′, w′ instead of v, w such that T − v′ − w′ = T ′ 
= A(2m − 1, m − 1).

Thus we may always assume that T − v − w = T ′ 
= A(2m − 1, m − 1).

Fig. 2. Trees with seven vertices and a 3-matching.
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Fig. 3.

By the induction assumption,

p(T ′; x) � p(B(2(m − 1) + 1, m − 1); x) for all x � λ1(T
′). (3.16)

By Lemma 2.2 we have

p(T ; x) = p(T − wu; x) − p(T − w − u; x)

= (x2 − 1)p(T ′; x) − xp(T − v − w − u; x), (3.17)

p(B(2m + 1, m); x) = (x2 − 1)p(B(2m − 1, m − 1); x)

−xp((K1 ∪ P3 ∪ (m − 3)K2; x). (3.18)

Since T − v − w − u is a proper subgraph of T ′ and T ′ is a proper subgraph of
T , λ1(T − v − w − u) < λ1(T

′) < λ1(T ). Since T ′ has an (m − 1)-matching and
2m − 1 vertices, T − v − w − u = T ′ − u has an (m − 2)-matching and 2m − 2
vertices. If K1 ∪ P3 ∪ (m − 3)K2 is a proper spanning subgraph of T − v − w − u,

then for x � λ1(T ) > λ1(T − v − w − u), we have

p(K1 ∪ P3 ∪ (m − 3)K2; x) > p(T − v − w − u; x).

Hence

p(T ; x) − p(B(2m + 1, m); x)

= (x2 − 1)
[
p(T ′; x) − p(B(2(m − 1) + 1, m − 1); x)

]
+ x

[
p(K1 ∪ P3 ∪ (m − 3)K2; x) − p(T − v − w − u; x)

]
> 0.

If K1 ∪ P3 ∪ (m − 3)K2 is not a proper spanning subgraph of T − v − w − u,

then T − v − w − u must be isomorphic to any of the graphs in Fig 4. Here T ′′ is a
forest with perfect matching and at least one connected component C has more than
four vertices. By Lemma 2.4, C has at least two pendant vertices which are adjacent
to vertices of degree 2. Therefore T must be isomorphic to A(2m + 1, m), B(2m +
1, m) or any of the graphs in Fig. 5.

For the graph in Fig. 5(a), we have T − v − w − u = K1 ∪ P3 ∪ (m − 3)K2.

Thus for x � λ1(T ), we have

Fig. 4.
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Fig. 5.

p(T ; x) − p(B(2m + 1, m); x)

= (x2 − 1)
[
p(T ′; x) − p(B(2(m − 1) + 1, m − 1); x)

]
> 0.

For the graphs in Fig. 5(b) and (c), T − v − w − u = 2K2 ∪ P4 ∪ (m − 4)K2. Since
p(P4; x) = xp(P3; x) − p(P2; x) and p(P2; x) = x2 − 1,

p(K1 ∪ P3 ∪ (m − 3)K2; x) − p(T − v − w − u; x)

= xp(P3; x)(x2 − 1)m−3 − x2p(P4; x)(x2 − 1)m−4

= (x2 − 1)m−4[(x2 − 1)2 − p(P4; x)
]
.

Thus for x � λ1(T ), we have

p(T ; x) − p(B(2m + 1, m); x)

= (x2 − 1)
[
p(T ′; x) − p(B(2(m − 1) + 1, m − 1); x)

]
+x(x2 − 1)m−4[(x2 − 1)2 − p(P4; x)

]
> 0.

For the graph in Fig. 5(d), since the component C of T ′′ has two pendant verti-
ces which are adjacent to vertices of degree 2, one may replace vertices v, u, w

by v1, w1, u1, then K1 ∪ P3 ∪ (m − 3)K2 is a proper spanning subgraph of T −
v1 − w1 − u1 and the result holds from the previous proof. Thus, we have proven
p(T ; x) > p(B(2m + 1, m); x) holds for all x � λ1(T ).

This completes the induction on m and proves the theorem when n = 2m + 1.

We now suppose n > 2m + 1 and proceed by induction on n. Let T be any tree
with n vertices and with an m-matching. By Lemma 2.6, T has an m-matching M and
a pendant vertex v such that M does not saturate v. Let u be the unique vertex such
that vu is a pendant edge. Let T ′ be the tree obtained from T by removing vertex v

and edge vu, namely, T ′ = T − v. Then T ′ is a tree with n − 1 vertices and with an
m-matching.

Fig. 6.
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Case 1. If T ′ is isomorphic to A(n − 1, m), then T must be isomorphic to one of
the graphs in Fig. 6 since T 
= A(n, m), B(n, m).

Thus T − v − u has a proper spanning subgraph K1 ∪ A(n − 3, m − 1). By Lem-
ma 2.3, we have λ1(T − v − u) > λ1(K1 ∪ A(n − 3, m − 1)) and

p(K1 ∪ A(n − 3, m − 1); x) > p(T − v − u; x) for all x � λ1(T − v − u).

By Lemma 2.2, we have

p(T ; x) = p(T − vu; x) − p(T − v − u; x)

= xp(A(n − 1, m); x) − p(T − v − u; x).

p(B(n, m); x) = xp(A(n − 1, m); x) − p(K1 ∪ A(n − 3, m − 1); x).

Since T − v − u = T ′ − u is a proper subgraph of T ′ and T ′ is a proper subgraph of
T , λ1(T − v − u) < λ1(T

′) < λ1(T ). Hence, by the above three equalities, we have

p(B(n, m); x) � p(T ; x) for all x � λ1(T ).

Case 2. If T ′ = T − v is not isomorphic to A(n − 1, m), then by the induction
assumption we have

p(T ′; x) � p(B(n − 1, m); x) for all x � λ1(T
′). (3.19)

By Lemma 2.2, we have

p(T ; x) = p(T − vu; x) − p(T − v − u; x)

= xp(T ′; x) − p(T − v − u; x).

p(B(n, m); x) = xp(B(n − 1, m); x)

−p((n − 2m − 1)K1 ∪ P3 ∪ (m − 2)K2; x).

p(T ; x) − p(B(n, m); x)

= x
[
p(T ′; x) − p(B(n − 1, m); x)

]
+[

p((n − 2m − 1)K1 ∪ P3 ∪ (m − 1)K2; x) − p(T − v − u; x)
]
.

(3.20)

Since T − v − u = T ′ − u is a proper subgraph of T ′ and T ′ is a proper subgraph of
T , λ1(T −v−u)<λ1(T

′)<λ1(T ). Since T ′ has an m-matching, T − v − u=T ′−u

has an (m − 1)-matching and n − 2 vertices. Note that (n − 2m − 1)K1 ∪ P3 ∪
(m − 2)K2 is not a proper spanning subgraph of T − v − u if and only if T − v − u

Fig. 7.



214 Y. Hou, J. Li / Linear Algebra and its Applications 342 (2002) 203–217

Fig. 8.

is isomorphic to any of the graphs in Fig. 7. Here T ′′ is a forest with perfect matching
and at least one connected component C has more than two vertices. By Lemma 2.4,
C has at least two pendant vertices which are adjacent to vertices of degree 2. Hence
T must be isomorphic to A(n, m), B(n, m) or one of the graphs in Fig. 8.

The component C of T ′′ has at least two pendant vertices which are adjacent
to vertices of degree 2. In both cases, Fig. 8(a) and (b), we may replace v, u by
v1, u1. Then (n − 2m − 1)K1 ∪ P3 ∪ (m − 2)K2 is a proper spanning subgraph of
T − v − u.

Therefore, if T 
= A(n, m), B(n, m), then using Lemma 2.3, we have λ1(T − v −
u) > λ1((n − 2m − 1)K1 ∪ P3 ∪ (m − 2)K2) and

p((n − 2m − 1)K1 ∪ P3 ∪ (m − 2)K2; x) > p(T − v − u; x)

for all x � λ1(T − v − u). (3.21)

Hence, by Eqs (3.19)–(3.21), we have

p(T ; x) > p(B(n, m); x) for all x � λ1(T ).

This completes the proof of Theorem 3.6 by induction. �

In the above theorem, we obtain the following corollary by taking m = 2.

Corollary 3.7 [5]. Let T be an n-vertex tree (n > 4), and T 
= Sn, A(n, 2). Then

λ1(T ) � 1

2

√
2(n − 1) + 2

√
n2 − 10n + 33, (3.22)

and equality holds if and only if T = B(n, 2).

The following result is concerned in trees with perfect matchings.

Theorem 3.8. Let T be a tree with n = 2m (m � 3) vertices and with a perfect
matching, and T 
= A(2m, m), C(2m, m). Then

p(T ; x) > p(C(2m, m); x) for all x � λ1(T ), (3.23)

and λ1(T ) < λ1(C(2m, m)).

Proof. It is sufficient to prove (3.23). We prove the theorem by induction on m.

If m = 3, then the unique tree T 
= A(6, 3) = C(6, 3) with six vertices and with a
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perfect matching is the path P6, and the theorem holds. We now suppose m � 4 and
proceed by induction. Let T be any tree with 2m vertices and with a perfect matching.
By Lemma 2.4, T has a pendant vertex v which is adjacent to a vertex w of degree 2.
Thus vw is an edge and there is a unique vertex u 
= v such that uw is also an edge
of T . Let T ′ be the tree obtained from T by removing vertices v and w and edges
vw and uw, namely, T ′ = T − v − w. Then T ′ is a tree with 2(m − 1) vertices and
with a perfect matching.

Case 1. If there exist vertices v, w, u satisfying the above-mentioned property and
T ′ = T − v − w is isomorphic to A(2(m − 1), m − 1), then by Lemma 2.2 we have

p(T ; x) = p(T − wu, x) − p(T − w − u; x)

= (x2 − 1)p(A(2(m − 1), m − 1); x)

−xp(T − v − w − u; x), (3.24)

p(C(2m, m); x) = (x2 − 1)p(A(2(m − 1), m − 1); x)

−xp((K1 ∪ A(2(m − 2), m − 2); x). (3.25)

Since T − v − w − u = T ′ − u is a proper subgraph of T ′ and T ′ is a proper sub-
graph of T , λ1(T − v − w − u) < λ1(T

′) < λ1(T ). Since T ′ = A(2(m − 1), m −
1), and T 
= A(2m, m), C(2m, m), the vertex u is neither the center of T ′ =
A(2(m − 1), m − 1) nor a vertex of degree 2 of T ′ = A(2(m − 1), m − 1). Hence u

is a vertex of degree 1 in T ′, and T ′ − u is connected and it has a proper spanning
subgraph K1 ∪ A(2(m − 2), m − 2) (see Fig. 9).

By Lemma 2.3 we have λ1(T − v − w − u) > λ1(K1 ∪ A(2(m − 2), m − 2)) and

p(K1 ∪ A(2(m − 2), m − 2); x) > p(T − v − w − u; x)

for all x � λ1(T − v − w − u). (3.26)

Hence, by Eqs. (3.24)–(3.26), we have

p(T ; x) > p(C(2m, m); x) for all x � λ1(T ).

Case 2. If T ′ = T − v − w is not isomorphic to A(2(m − 1), m − 1) for any ver-
tices v, w, u in which v is a pendant vertex and w has only two neighbors v, u, then
by the induction assumption, we have

p(T ′; x) � p(C(2(m − 1); m − 1); x) for all x � λ1(T
′). (3.27)

By Lemma 2.2, we have

Fig. 9.
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p(T ; x) = p(T − wu; x) − p(T − w − u; x)

= (x2 − 1)p(T ′; x) − xp(T − v − w − u; x),

p(C(2m, m); x) = (x2 − 1)p(C(2(m − 1), m − 1); x)

−xp(K1 ∪ P4 ∪ (m − 4)K2; x),

p(T ; x) − p(C(2m, m); x)

= (x2 − 1)
[
p(T ′; x) − p(C(2(m − 1), m − 1); x)

]
+x

[
p(K1 ∪ P4 ∪ (m − 4)K2; x) − p(T − v − w − u; x)

]
.

(3.28)

Since T − v − w − u = T ′ − u is a proper subgraph of T ′ and T ′ is a proper
subgraph of T , λ1(T − v − w − u) < λ1(T

′) < λ1(T ). Since T ′ has an (m − 1)-
matching, T − v − w − u = T ′ − u has an (m − 2)-matching and n − 3 = 2(m −
2) + 1 vertices. Thus K1 ∪ (m − 2)K2 is a spanning subgraph of T − v − u − w.

Hence K1 ∪ P4 ∪ (m − 4)K2 is not a proper spanning subgraph of T − v − w − u

if and only if T − v − w − u is isomorphic to any of the graphs in Fig 10.
Therefore T must be isomorphic to either of an A(2m, m), C(2m, m) or any of

the graphs in Fig. 11.
Among graphs in Fig. 11, (a) is impossible since it has no m-matching, (b) and

(c) are impossible because we may choose vertices v1, w1 instead of v, w such that
T − v1 − w1 is isomorphic to A(2(m − 1), m − 1). Hence K1 ∪ P4 ∪ (m − 4)K2 is
a proper spanning subgraph of T − v − w − u when T 
= A(2m, m), C(2m, m). By
Lemma 2.3 we have λ1(T − v − w − u) > λ1(K1 ∪ P4 ∪ (m − 4)K2) and

p(K1 ∪ P4 ∪ (m − 4)K2; x) > p(T − v − w − u; x)

for all x � λ1(T − v − w − u). (3.29)

Hence, using Eqs. (3.27)–(3.29), we have

p(T ; x) > p(C(2m, m); x) for all x � λ1(T ).

This completes the proof of the theorem. �

Fig. 10.

Fig. 11.
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Fig. 12.

Table 1

√
n − 1 Th. 3.3 Cor. 3.4 Cor. 3.5 Th. 3.6 Cor. 3.7 Th. 3.8 λ1

T1 3 2.52433 2.8530 2.433 2.71579 2.367
T2 3 2.52433 2.8530 2.4142 2.71579 2.2850 2.250

We conclude this paper by the example shown in Fig. 12 which compares our new
bounds with the old known bounds. Let n = 10, and T1 and T2 be two trees with 10
vertices and with 3-matching and 5-matching, respectively.

Table 1 gives bounds in terms of our results and known results, and λ1 is the
factual value of λ1(T ).

In general, the bound in terms of Theorem 3.3, that is,
1

2

√
2(n − m + 1) + 2

√
(n − m − 1)2 + 4m − 4

is a decreasing function of m. So, for any tree T 
= Sn, and it is always better than

known bounds 1
2

√
2(n − 1) + 2

√
n2 − 6n + 13 (i.e., Corollary 3.4.)
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