15,702 research outputs found
Design guidelines for spatial modulation
A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants
Low-mass Active Galactic Nuclei on the Fundamental Plane of Black Hole Activity
It is widely known that in active galactic nuclei (AGNs) and black hole X-ray
binaries (BHXBs), there is a tight correlation among their radio luminosity
(), X-ray luminosity () and BH mass (\mbh), the so-called
`fundamental plane' (FP) of BH activity. Yet the supporting data are very
limited in the \mbh regime between stellar mass (i.e., BHXBs) and
10\,\msun\ (namely, the lower bound of supermassive BHs in common
AGNs). In this work, we developed a new method to measure the 1.4 GHz flux
directly from the images of the VLA FIRST survey, and apply it to the type-1
low-mass AGNs in the \cite{2012ApJ...755..167D} sample. As a result, we
obtained 19 new low-mass AGNs for FP research with both \mbh\ estimates (\mbh
\approx 10^{5.5-6.5}\,\msun), reliable X-ray measurements, and (candidate)
radio detections, tripling the number of such candidate sources in the
literature.Most (if not all) of the low-mass AGNs follow the standard
radio/X-ray correlation and the universal FP relation fitted with the combined
dataset of BHXBs and supermassive AGNs by \citet{2009ApJ...706..404G}; the
consistency in the radio/X-ray correlation slope among those accretion systems
supports the picture that the accretion and ejection (jet) processes are quite
similar in all accretion systems of different \mbh. In view of the FP relation,
we speculate that the radio loudness (i.e., the luminosity ratio
of the jet to the accretion disk) of AGNs depends not only on Eddington ratio,
but probably also on \mbh.Comment: ApJ accepte
Boundary Contributions of On-shell Recursion Relations With Multiple-line Deformation
On-shell recursion relation has been recognized as a powerful tool for
calculating tree level amplitudes in quantum field theory, but it doesn't work
well when the residue of the deformed amplitude doesn't vanish at
infinity of . However, in such situation, we still can get the right
amplitude by computing the boundary contribution explicitly. In
arXiv:0801.2385, background field method was first used to analyze the boundary
behaviors of amplitudes with two deformed external lines in different theories.
The same method has also been generalized to calculate the explicit boundary
operators of some amplitudes with BCFW-like deformation in arXiv:1507.00463. In
this paper, we will take a step further to generalize the method into the case
of multiple-line deformation, and to show how the boundary behaviors (even the
boundary contributions) can be extracted in the method.Comment: 20 pages, 6 figure
Complexity growth rates for AdS black holes in massive gravity and gravity
The "complexity = action" duality states that the quantum complexity is equal
to the action of the stationary AdS black holes within the Wheeler-DeWitt patch
at late time approximation. We compute the action growth rates of the neutral
and charged black holes in massive gravity and the neutral, charged and
Kerr-Newman black holes in gravity to test this conjecture. Besides, we
investigate the effects of the massive graviton terms, higher derivative terms
and the topology of the black hole horizon on the complexity growth rate.Comment: 11 pages, no figur
Effects of polymer additives in the bulk of turbulent thermal convection
We present experimental evidence that a minute amount of polymer additives
can significantly enhance heat transport in the bulk region of turbulent
thermal convection. The effects of polymer additives are found to be the
\textit{suppression} of turbulent background fluctuations that give rise to
incoherent heat fluxes that make no net contribution to heat transport, and at
the same time to \textit{increase} the coherency of temperature and velocity
fields. The suppression of small-scale turbulent fluctuations leads to more
coherent thermal plumes that result in the heat transport enhancement. The fact
that polymer additives can increase the coherency of thermal plumes is
supported by the measurements of a number of local quantities, such as the
extracted plume amplitude and width, the velocity autocorrelation functions and
the velocity-temperature cross-correlation coefficient. The results from local
measurements also suggest the existence of a threshold value for the polymer
concentration, only above which can significant modification of the plume
coherent properties and enhancement of the local heat flux be observed.
Estimation of the plume emission rate suggests that the second effect of
polymer additives is to stabilize the thermal boundary layers.Comment: 8 figures, 11 page
Improving thermoelectric properties of p-type Bi2Te3-based alloys by spark plasma sintering
AbstractHigh-performance (Bi2Te3)x(Sb2Te3)1−x bulk materials were prepared by combining fusion technique with spark plasma sintering, and their thermoelectric properties were investigated. The electrical resistivity and Seebeck coefficient increase greatly and the thermal conductivity decreases significantly with the increase of Bi2Te3 content, which leads to a great improvement in the thermoelectric figure of merit ZT. The maximum ZT value reaches 1.33 at 398 K for the composition of 20%Bi2Te3-80%Sb2Te3 with 3% (mass fraction) excess Te
- …