749 research outputs found

    Dirac-Electrons-Mediated Magnetic Proximity Effect in Topological Insulator / Magnetic Insulator Heterostructures

    Full text link
    The possible realization of dissipationless chiral edge current in a topological insulator / magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. Here we report a polarized neutron reflectometry observation of Dirac electrons mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi0.2_{0.2}Sb0.8_{0.8})2_{2}Te3_{3} / magnetic insulator EuS heterostructure. We are able to maximize the proximity induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the charge neutral point. A phenomenological model based on diamagnetic screening is developed to explain the suppressed proximity induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator hetero-interface for low-power spintronic applications.Comment: 5 pages main text with 4 figures; 2 pages supplemental materials; suggestions and discussions are welcome

    Topological Hall effect and the magnetic states of Nowotney chimney ladder compound Cr11_{11}Ge19_{19}}

    Get PDF
    We have investigated the magnetic and charge transport properties of single crystals of Nowotney Chimney Ladder compound Cr11_{11}Ge19_{19} and mapped out a comprehensive phase diagram reflecting the complicated interplay between the Dzyaloshinskii-Moriya (DM) interaction, the dipolar interaction, and the magnetic anisotropy. We have identified a set of interesting magnetic phases and attributed a finite topological Hall effect to the recently discovered bi-skyrmion phase. These data also suggest the existence of an anti-skyrmion state at finite fields for temperatures just below the magnetic ordering temperature, TcT_c, as indicated by a distinct change in sign of the topological Hall effect. Above TcT_c, we discovered a region of enhanced magnetic response corresponding to a disordered phase likely existing near the ferromagnetic critical point under small magnetic fields. Strong spin chirality fluctuations are demonstrated by the large value of the topological Hall resistivity persisting up to 1 T which is most likely due to the existence of the DM interaction. We argue that changes to the topological Hall effect correspond to different topological spin textures that are controlled by magnetic dipolar and DM interactions that vary in importance with temperature.Comment: 12 pages, 16 figure

    Manipulating Multiple Order Parameters via Oxygen Vacancies: The case of Eu0.5Ba0.5TiO3-{\delta}

    Get PDF
    Controlling functionalities, such as magnetism or ferroelectricity, by means of oxygen vacancies (VO) is a key issue for the future development of transition metal oxides. Progress in this field is currently addressed through VO variations and their impact on mainly one order parameter. Here we reveal a new mechanism for tuning both magnetism and ferroelectricity simultaneously by using VO. Combined experimental and density-functional theory studies of Eu0.5Ba0.5TiO3-{\delta}, we demonstrate that oxygen vacancies create Ti3+ 3d1 defect states, mediating the ferromagnetic coupling between the localized Eu 4f7 spins, and increase an off-center displacement of Ti ions, enhancing the ferroelectric Curie temperature. The dual function of Ti sites also promises a magnetoelectric coupling in the Eu0.5Ba0.5TiO3-{\delta}.Comment: Accepted by Physical Review B, 201

    Investigation of the Convective Heat Transfer Coefficient of the Hand and Fingers in Firefighter Gloves Using a Thermal Hand

    Get PDF
    The heat transfer coefficients of the hands are critical inputs of the thermoregulation model that can simulate thermal responses of the hand and fingers. Besides, the hand has a greater surface area to mass ratio and complex anthropometric parameters, thus is extremely important in heat transfer and thermoregulation. However, the convective heat transfer coefficients of the fingers, palm, and dorsal of the hand are not fully investigated and understood. Accordingly, there is an urgent need for full understanding of the convective heat transfer coefficients in both the whole-hand and regional segments. The results of this study will provide guidance for the thermal model development, cold and burn injuries assessment, and design of high-performance protective gloves

    Investigating the Effects of Size on Glove Thermal Insulation Using a Thermal Hand

    Get PDF
    Thermal insulation for gloves has also been measured to assess comfort using thermal hands. However, the previous studies mainly focused on the thermal insulation among different types of gloves, rather than across different-sized gloves of the same type. Actually, the air gap thickness and volume between the skin of the hand and the gloves varies with the size of the gloves and on different locations on the hand, thereby affecting the heat and mass transfer between the skin and its thermal environment. Consequently, different-sized gloves will affect the thermal responses of hand and fingers as well as the thermal comfort. To design the next generation of highperformance gloves, it is critical to investigate the effects of size/fit on thermal insulation of gloves to enable both thermal protection and thermal comfort. In this study, the thermal insulation of two types of gloves with different sizes was measured and the effect of size/fit on thermal insulation was established

    Route to high-energy density polymeric nitrogen t-N via He−N compounds

    Get PDF
    Polymeric nitrogen, stabilized by compressing pure molecular nitrogen, has yet to be recovered to ambient conditions, precluding its application as a high-energy density material. Here we suggest a route for synthesis of a tetragonal polymeric nitrogen, denoted t-N, via He-N compounds at high pressures. Using first-principles calculations with structure searching, we predict a class of nitrides with stoichiometry HeN4 that are energetically stable (relative to a mixture of solid He and N2) above 8.5 GPa. At high pressure, HeN4 comprises a polymeric channel-like nitrogen framework filled with linearly arranged helium atoms. The nitrogen framework persists to ambient pressure on decompression after removal of helium, forming pure polymeric nitrogen, t-N. t-N is dynamically and mechanically stable at ambient pressure with an estimated energy density of ~11.31 kJ/g, marking it out as a remarkable high-energy density material. This expands the known polymeric forms of nitrogen and indicates a route to its synthesis

    Integrative metabolomic and transcriptomic analysis reveals difference in glucose and lipid metabolism in the longissimus muscle of Luchuan and Duroc pigs

    Get PDF
    Luchuan pig, an obese indigenous Chinese porcine breed, has a desirable meat quality and reproductive capacity. Duroc, a traditional western breed, shows a faster growth rate, high feed efficiency and high lean meat rate. Given the unique features these two porcine breeds have, it is of interest to investigate the underlying molecular mechanisms behind their distinctive nature. In this study, the metabolic and transcriptomic profiles of longissimus dorsi muscle from Duroc and Luchuan pigs were compared. A total of 609 metabolites were identified, 77 of which were significantly decreased in Luchuan compared to Duroc, and 71 of which were significantly elevated. Most differentially accumulated metabolites (DAMs) upregulated in Luchuan were glycerophospholipids, fatty acids, oxidized lipids, alcohols, and amines, while metabolites downregulated in Luchuan were mostly amino acids, organic acids and nucleic acids, bile acids and hormones. From our RNA-sequencing (RNA-seq) data we identified a total of 3638 differentially expressed genes (DEGs), 1802 upregulated and 1836 downregulated in Luchuan skeletal muscle compared to Duroc. Combined multivariate and pathway enrichment analyses of metabolome and transcriptome results revealed that many of the DEGs and DAMs are associated with critical energy metabolic pathways, especially those related to glucose and lipid metabolism. We examined the expression of important DEGs in two pathways, AMP-activated protein kinase (AMPK) signaling pathway and fructose and mannose metabolism, using Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Genes related to glucose uptake, glycolysis, glycogen synthesis, fatty acid synthesis (PFKFB1, PFKFB4, MPI, TPI1, GYS1, SLC2A4, FASN, IRS1, ULK1) are more activated in Luchuan, while genes related to fatty acid oxidation, cholesterol synthesis (CPT1A, HMGCR, FOXO3) are more suppressed. Energy utilization can be a decisive factor to the distinctive metabolic, physiological and nutritional characteristics in skeletal muscle of the two breeds we studied. Our research may facilitate future porcine breeding projects and can be used to reveal the potential molecular basis of differences in complex traits between various breeds

    Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients

    Get PDF
    Transplantation of mesenchymal stem cells (MSCs) derived from adult bone marrow has been proposed as a potential therapeutic approach for post-infarction left ventricular (LV) dysfunction. However, age-related functional decline of stem cells has restricted their clinical benefits after transplantation into the infarcted myocardium. The limitations imposed on patient cells could be addressed by genetic modification of stem cells. This study was designed to improve our understanding of genetic modification of human bone marrow derived mesenchymal stem cells (hMSCs) by polyethylenimine (PEI, branched with Mw 25 kD), one of non-viral vectors that show promise in stem cell genetic modification, in the context of cardiac regeneration for patients. We optimized the PEI-mediated reporter gene transfection into hMSCs, evaluated whether transfection efficiency is associated with gender or age of the cell donors, analysed the influence of cell cycle on transfection and investigated the transfer of therapeutic vascular endothelial growth factor gene (VEGF). hMSCs were isolated from patients with cardiovascular disease aged from 41 to 85 years. Optimization of gene delivery to hMSCs was carried out based on the particle size of the PEI/DNA complexes, N/P ratio of complexes, DNA dosage and cell viability. The highest efficiency with the cell viability near 60% was achieved at N/P ratio 2 and 6.0 μg DNA/cm 2. The average transfection efficiency for all tested samples, middle-age group (<65 years), old-age group (>65 years), female group and male group was 4.32%, 3.85%, 4.52%, 4.14% and 4.38%, respectively. The transfection efficiency did not show any correlation either with the age or the gender of the donors. Statistically, there were two subpopulations in the donors; and transfection efficiency in each subpopulation was linearly related to the cell percentage in S phase. No significant phenotypic differences were observed between these two subpopulations. Furthermore, PEI-mediated therapeutic gene VEGF transfer could significantly enhance the expression level.DFG/SFB/Transregio 37BMBF/0313191German Helmholtz AssociationDFG/0402710Ministry of Education/0312138 AMinistry of Economy (Mecklenburg-West Pommerania)/V220-630-08-TFMVF/S-035Marie Curie International Research Staff Exchange Scheme (IRSES, FP7-PEOPLE-2009-IRSES)Reference and Translation Center for Cardiac Stem Cell Therapy (RTC
    corecore