494 research outputs found

    Han's Bijection via Permutation Codes

    Get PDF
    We show that Han's bijection when restricted to permutations can be carried out in terms of the cyclic major code and the cyclic inversion code. In other words, it maps a permutation π\pi with a cyclic major code (s1,s2,...,sn)(s_1, s_2, ..., s_n) to a permutation σ\sigma with a cyclic inversion code (s1,s2,...,sn)(s_1,s_2, ..., s_n). We also show that the fixed points of Han's map can be characterized by the strong fixed points of Foata's second fundamental transformation. The notion of strong fixed points is related to partial Foata maps introduced by Bj\"orner and Wachs.Comment: 12 pages, to appear in European J. Combi

    A Bijection between Atomic Partitions and Unsplitable Partitions

    Full text link
    In the study of the algebra NCSym\mathrm{NCSym} of symmetric functions in noncommutative variables, Bergeron and Zabrocki found a free generating set consisting of power sum symmetric functions indexed by atomic partitions. On the other hand, Bergeron, Reutenauer, Rosas, and Zabrocki studied another free generating set of NCSym\mathrm{NCSym} consisting of monomial symmetric functions indexed by unsplitable partitions. Can and Sagan raised the question of finding a bijection between atomic partitions and unsplitable partitions. In this paper, we provide such a bijection.Comment: 6 page

    4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time

    Get PDF
    We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.Comment: 17 pages, 9 figures, 5 tables, Accepted for publication in ApJ

    Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ

    Get PDF
    The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25{\deg} < l < 100{\deg} and Galactic latitudes . The energy range covered by this analysis, from ~350 GeV to ~2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40{\deg} < l < 100{\deg} and 65{\deg} < l < 85{\deg} (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.Comment: 11 pages, 6 figures, published in AP

    Practical computational toolkits for dendrimers and dendrons structure design

    Get PDF
    Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface (GUI) toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.Peer reviewe

    Search for Gamma-Ray Emission from the Sun during Solar Minimum with the ARGO-YBJ Experiment

    Get PDF
    The hadronic interaction of cosmic rays with solar atmosphere can produce high energy gamma-rays. The gamma-ray luminosity is correlated both with the flux of primary cosmic rays and the intensity of the solar magnetic field. The gamma-rays below 200 GeV have been observed by Fermi without any evident energy cutoff. The bright gamma-ray flux above 100 GeV has been detected only during solar minimum. The only available data in the TeV range come from the HAWC observations, however, outside the solar minimum. The ARGO-YBJ data set has been used to search for sub-TeV/TeV gamma-rays from the Sun during the solar minimum from 2008 to 2010, the same time period covered by the Fermi data. A suitable model containing the Sun shadow, solar disk emission, and inverse-Compton emission has been developed, and the chi-square minimization method was used to quantitatively estimate the disk gamma-ray signal. The result shows that no significant gamma-ray signal is detected and upper limits to the gamma-ray flux at 0.3-7 TeV are set at the 95% confidence level. In the low energy range these limits are consistent with the extrapolation of the Fermi-LAT measurements taken during solar minimum and are compatible with a softening of the gamma-ray spectrum below 1 TeV. They also provide an experimental upper bound to any solar disk emission at TeV energies. Models of dark matter annihilation via long-lived mediators predicting gamma-ray fluxes >10 -7 GeV cm -2 s -1 below 1 TeV are ruled out by the ARGO-YBJ limits

    Search for Gamma-Ray Emission from the Sun during Solar Minimum with the ARGO-YBJ Experiment

    Get PDF
    The hadronic interaction of cosmic rays with solar atmosphere can produce high energy gamma rays. The gamma-ray luminosity is correlated both with the flux of primary cosmic rays and the intensity of the solar magnetic field. The gamma rays below 200 GeV have been observed by FermiFermi without any evident energy cutoff. The bright gamma-ray flux above 100 GeV has been detected only during solar minimum. The only available data in TeV range come from the HAWC observations, however outside the solar minimum. The ARGO-YBJ dataset has been used to search for sub-TeV/TeV gamma rays from the Sun during the solar minimum from 2008 to 2010, the same time period covered by the Fermi data. A suitable model containing the Sun shadow, solar disk emission and inverse-Compton emission has been developed, and the chi-square minimization method was used to quantitatively estimate the disk gamma-ray signal. The result shows that no significant gamma-ray signal is detected and upper limits to the gamma-ray flux at 0.3−-7 TeV are set at 95\% confidence level. In the low energy range these limits are consistent with the extrapolation of the Fermi-LAT measurements taken during solar minimum and are compatible with a softening of the gamma-ray spectrum below 1 TeV. They provide also an experimental upper bound to any solar disk emission at TeV energies. Models of dark matter annihilation via long-lived mediators predicting gamma-ray fluxes > 10−710^{-7} GeV cm−2cm^{-2} s−1s^{-1} below 1 TeV are ruled out by the ARGO-YBJ limits

    Bioremoval of diethylketone by the synergistic combination of microorganisms and clays : uptake, removal and kinetic studies

    Get PDF
    The performance of two bacteria, Arthrobacter viscosus and Streptococcus equisimilis, and the effect of the interaction of these bacteria with four different clays on the retention of diethylketone were investigated in batch experiments. The uptake, the removal percentages and the kinetics of the processes were determined. S. equisimilis,by itself, had the best performance in terms of removal percentage, for all the initial diethylketone concentrations tested: 200, 350 and 700 mg/L. The uptake values are similar for both bacteria. A possible mechanism to explain the removal of diethylketone includes its degradation by bacteria, followed by the adsorption of the intermediates/sub-products by the functional groups present on the cells surfaces. The assays performed with bacteria and clays indicated that the uptake values are similar despite of the clay used, for the same microorganism and mass of clay, but in general higher values are reached when S. equisimilis is used, compared to A. viscosus. Kinetic data were described by pseudo-first and pseudo-second order models.The authors would like to gratefully acknowledge the financial support of this project by the Fundacao para a Ciencia e Tecnologia, Ministerio da Ciencia e Tecnologia, Portugal and co-funding by FSE (programme QREN-POPH). Cristina Quintelas thanks FCT for a post-doc grant. The authors would like also to thank Minas de Barqueiros, S. A., Prof. Rui Boaventura (FEUP-Portugal) and Prof. Isabel Correia Neves (Dep Quimica, UM, Portugal) who gently offered the clays
    • …
    corecore