294 research outputs found

    Internal magnetic fields in 13 red giants detected by asteroseismology

    Full text link
    While surface fields have been measured for stars across the HR diagram, internal magnetic fields remain largely unknown. The recent seismic detection of magnetic fields in the cores of several Kepler red giants has opened a new avenue to understand better the origin of magnetic fields and their impact on stellar structure and evolution. We aim to use asteroseismology to systematically search for internal magnetic fields in red giant stars and to determine the strengths and geometries of these fields. Magnetic fields are known to break the symmetry of rotational multiplets. In red giants, oscillation modes are mixed, behaving as pressure modes in the envelope and as gravity modes in the core. Magnetism-induced asymmetries are expected to be stronger for g-dominated modes than for p-dominated modes and to decrease with frequency. After collecting a sample of 2500 Kepler red giant stars with clear mixed-mode patterns, we specifically searched for targets among 1200 stars with dipole triplets. We identified 13 stars exhibiting clear asymmetric multiplets and measured their parameters, especially the asymmetry parameter and the magnetic frequency shift. By combining these estimates with best-fitting stellar models, we measured average core magnetic fields ranging from 20 to 150kG, corresponding to 5% to 30% of the critical field strengths. We showed that the detected core fields have various horizontal geometries, some of which significantly differ from a dipolar configuration. We found that the field strengths decrease with stellar evolution, despite the fact that the cores of these stars are contracting. Even though these stars have strong internal magnetic fields, they display normal core rotation rates, suggesting no significantly different histories of angular momentum transport compared to other red giant stars. We also discuss the possible origin of the detected fields.Comment: Accepted for publication in A&A. Long appendi

    Asteroseismic Modeling of 1,153 Kepler Red Giant Branch Stars: Improved Stellar Parameters with Gravity-Mode Period Spacings and Luminosity Constraints

    Full text link
    This paper reports estimated stellar parameters of 1,153 Kepler red giant branch stars determined with asteroseismic modeling. We use radial-mode oscillation frequencies, gravity-mode period spacings, Gaia luminosities, and spectroscopic data to characterize these stars. Compared with previous studies, we find that the two additional observed constraints, i.e., the gravity-mode period spacing and luminosity, significantly improve the precision of fundamental stellar parameters. The typical uncertainties are 2.9% for the mass, 11% for the age, 1.0% for the radius, 0.0039 dex for the surface gravity, and 0.5\% for the helium core mass, making this the best-characterized large sample of red-giant stars available to date. With better characterizations for these red giants, we recalibrate the seismic scaling relations and study the surface term on the red-giant branch. We confirm that the surface term depends on the surface gravity and effective temperature, but there is no significant correlation with metallicity.Comment: Accepted by Ap

    Solar-type Stars Observed by LAMOST and Kepler

    Full text link
    Obtaining measurements of chromospheric and photometric activity of stars with near-solar fundamental parameters and rotation periods is important for a better understanding of solar-stellar connection. We select a sample of 2603 stars with near-solar fundamental parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)-Kepler field and use LAMOST spectra to measure their chromospheric activity and Kepler light curves to measure their photospheric activity (i.e., the amplitude of the photometric variability). While the rotation periods of 1556 of these stars could not be measured due to the low amplitude of the photometric variability and highly irregular temporal profile of light curves, 254 stars were further identified as having near-solar rotation periods. We show that stars with near-solar rotation periods have chromospheric activities that are systematically higher than stars with undetected rotation periods. Furthermore, while the solar level of photospheric and chromospheric activity appears to be typical for stars with undetected rotation periods, the Sun appears to be less active than most stars with near-solar rotation periods (both in terms of photospheric and chromospheric activity).Comment: 7 pages, 6 figure
    • …
    corecore