60 research outputs found

    Balanced Active Core in Heterogeneous Neuronal Networks

    Get PDF
    It is hypothesized that cortical neuronal circuits operate in a global balanced state, i.e., the majority of neurons fire irregularly by receiving balanced inputs of excitation and inhibition. Meanwhile, it has been observed in experiments that sensory information is often sparsely encoded by only a small set of firing neurons, while neurons in the rest of the network are silent. The phenomenon of sparse coding challenges the hypothesis of a global balanced state in the brain. To reconcile this, here we address the issue of whether a balanced state can exist in a small number of firing neurons by taking account of the heterogeneity of network structure such as scale-free and small-world networks. We propose necessary conditions and show that, under these conditions, for sparsely but strongly connected heterogeneous networks with various types of single-neuron dynamics, despite the fact that the whole network receives external inputs, there is a small active subnetwork (active core) inherently embedded within it. The neurons in this active core have relatively high firing rates while the neurons in the rest of the network are quiescent. Surprisingly, although the whole network is heterogeneous and unbalanced, the active core possesses a balanced state and its connectivity structure is close to a homogeneous Erdös-Rényi network. The dynamics of the active core can be well-predicted using the Fokker-Planck equation. Our results suggest that the balanced state may be maintained by a small group of spiking neurons embedded in a large heterogeneous network in the brain. The existence of the small active core reconciles the balanced state and the sparse coding, and also provides a potential dynamical scenario underlying sparse coding in neuronal networks

    Neuromatch Academy: Teaching Computational Neuroscience with global accessibility

    Full text link
    Neuromatch Academy designed and ran a fully online 3-week Computational Neuroscience summer school for 1757 students with 191 teaching assistants working in virtual inverted (or flipped) classrooms and on small group projects. Fourteen languages, active community management, and low cost allowed for an unprecedented level of inclusivity and universal accessibility.Comment: 10 pages, 3 figures. Equal contribution by the executive committee members of Neuromatch Academy: Tara van Viegen, Athena Akrami, Kate Bonnen, Eric DeWitt, Alexandre Hyafil, Helena Ledmyr, Grace W. Lindsay, Patrick Mineault, John D. Murray, Xaq Pitkow, Aina Puce, Madineh Sedigh-Sarvestani, Carsen Stringer. and equal contribution by the board of directors of Neuromatch Academy: Gunnar Blohm, Konrad Kording, Paul Schrater, Brad Wyble, Sean Escola, Megan A. K. Peter

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF
    Neuromatch Academy (https://academy.neuromatch.io; (van Viegen et al., 2021)) was designed as an online summer school to cover the basics of computational neuroscience in three weeks. The materials cover dominant and emerging computational neuroscience tools, how they complement one another, and specifically focus on how they can help us to better understand how the brain functions. An original component of the materials is its focus on modeling choices, i.e. how do we choose the right approach, how do we build models, and how can we evaluate models to determine if they provide real (meaningful) insight. This meta-modeling component of the instructional materials asks what questions can be answered by different techniques, and how to apply them meaningfully to get insight about brain function

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF

    Multiple Information Fusion Face Recognition Using Key Feature Points

    No full text
    After years of face recognition research,due to the effect of illumination,noise and other conditions have led to the recognition rate is relatively low,2 d face recognition technology has couldn’t keep up with the pace of The Times the forefront,Although 3 d face recognition technology is developing step by step,but it has a higher complexity. In order to solve this problem,based on the traditional depth information positioning method and local characteristic analysis methods LFA,puts forward an improved 3 d face key feature points localization algorithm, and on the basis of the trained sample which obtained by complete cluster,further put forward the global and local feature extraction algorithm of weighted fusion. Through FRGC and BU-3DFE experiment data comparison and analysis of the two face library,the method in terms of 3 d face recognition effect has a higher robustness
    corecore