45 research outputs found

    Programming Deformations of 3D Microstructures:Opportunities Enabled by Magnetic Alignment of Liquid Crystalline Elastomers

    Get PDF
    ConspectusSynthetic structures that undergo controlled movement are crucial building blocks for developing new technologies applicable to robotics, healthcare, and sustainable self-regulated materials. Yet, programming motion is nontrivial, and particularly at the microscale it remains a fundamental challenge. At the macroscale, movement can be controlled by conventional electric, pneumatic, or combustion-based machinery. At the nanoscale, chemistry has taken strides in enabling molecularly fueled movement. Yet in between, at the microscale, top-down fabrication becomes cumbersome and expensive, while bottom-up chemical self-assembly and amplified molecular motion does not reach the necessary sophistication. Hence, new approaches that converge top-down and bottom-up methods and enable motional complexity at the microscale are urgently needed.Synthetic anisotropic materials (e.g., liquid crystalline elastomers, LCEs) with encoded molecular anisotropy that are shaped into arbitrary geometries by top-down fabrication promise new opportunities to implement controlled actuation at the microscale. In such materials, motional complexity is directly linked to the built-in molecular anisotropy that can be “activated” by external stimuli. So far, encoding the desired patterns of molecular directionality has relied mostly on either mechanical or surface alignment techniques, which do not allow the decoupling of molecular and geometric features, severely restricting achievable material shapes and thus limiting attainable actuation patterns, unless complex multimaterial constructs are fabricated. Electromagnetic fields have recently emerged as possible alternatives to provide 3D control over local anisotropy, independent of the geometry of a given 3D object.The combination of magnetic alignment and soft lithography, in particular, provides a powerful platform for the rapid, practical, and facile production of microscale soft actuators with field-defined local anisotropy. Recent work has established the feasibility of this approach with low magnetic field strengths (in the lower mT range) and comparably simple setups used for the fabrication of the microactuators, in which magnetic fields can be engineered through arrangement of permanent magnets. This workflow gives access to microstructures with unusual spatial patterning of molecular alignment and has enabled a multitude of nontrivial deformation types that would not be possible to program by any other means at the micron scale. A range of “activating” stimuli can be used to put these structures in motion, and the type of the trigger plays a key role too: directional and dynamic stimuli (such as light) make it possible to activate the patterned anisotropic material locally and transiently, which enables one to achieve and further program motional complexity and communication in microactuators.In this Account, we will discuss recent advances in magnetic alignment of molecular anisotropy and its use in soft lithography and related fabrication approaches to create LCE microactuators. We will examine how design choices─from the molecular to the fabrication and the operational levels─control and define the achievable LCE deformations. We then address the role of stimuli in realizing the motional complexity and how one can engineer feedback within and communication between microactuator arrays fabricated by soft lithography. Overall, we outline emerging strategies that make possible a completely new approach to designing for desired sets of motions of active, microscale objects.</p

    Programming Deformations of 3D Microstructures:Opportunities Enabled by Magnetic Alignment of Liquid Crystalline Elastomers

    Get PDF
    ConspectusSynthetic structures that undergo controlled movement are crucial building blocks for developing new technologies applicable to robotics, healthcare, and sustainable self-regulated materials. Yet, programming motion is nontrivial, and particularly at the microscale it remains a fundamental challenge. At the macroscale, movement can be controlled by conventional electric, pneumatic, or combustion-based machinery. At the nanoscale, chemistry has taken strides in enabling molecularly fueled movement. Yet in between, at the microscale, top-down fabrication becomes cumbersome and expensive, while bottom-up chemical self-assembly and amplified molecular motion does not reach the necessary sophistication. Hence, new approaches that converge top-down and bottom-up methods and enable motional complexity at the microscale are urgently needed.Synthetic anisotropic materials (e.g., liquid crystalline elastomers, LCEs) with encoded molecular anisotropy that are shaped into arbitrary geometries by top-down fabrication promise new opportunities to implement controlled actuation at the microscale. In such materials, motional complexity is directly linked to the built-in molecular anisotropy that can be “activated” by external stimuli. So far, encoding the desired patterns of molecular directionality has relied mostly on either mechanical or surface alignment techniques, which do not allow the decoupling of molecular and geometric features, severely restricting achievable material shapes and thus limiting attainable actuation patterns, unless complex multimaterial constructs are fabricated. Electromagnetic fields have recently emerged as possible alternatives to provide 3D control over local anisotropy, independent of the geometry of a given 3D object.The combination of magnetic alignment and soft lithography, in particular, provides a powerful platform for the rapid, practical, and facile production of microscale soft actuators with field-defined local anisotropy. Recent work has established the feasibility of this approach with low magnetic field strengths (in the lower mT range) and comparably simple setups used for the fabrication of the microactuators, in which magnetic fields can be engineered through arrangement of permanent magnets. This workflow gives access to microstructures with unusual spatial patterning of molecular alignment and has enabled a multitude of nontrivial deformation types that would not be possible to program by any other means at the micron scale. A range of “activating” stimuli can be used to put these structures in motion, and the type of the trigger plays a key role too: directional and dynamic stimuli (such as light) make it possible to activate the patterned anisotropic material locally and transiently, which enables one to achieve and further program motional complexity and communication in microactuators.In this Account, we will discuss recent advances in magnetic alignment of molecular anisotropy and its use in soft lithography and related fabrication approaches to create LCE microactuators. We will examine how design choices─from the molecular to the fabrication and the operational levels─control and define the achievable LCE deformations. We then address the role of stimuli in realizing the motional complexity and how one can engineer feedback within and communication between microactuator arrays fabricated by soft lithography. Overall, we outline emerging strategies that make possible a completely new approach to designing for desired sets of motions of active, microscale objects.</p

    Programming Deformations of 3D Microstructures:Opportunities Enabled by Magnetic Alignment of Liquid Crystalline Elastomers

    Get PDF
    ConspectusSynthetic structures that undergo controlled movement are crucial building blocks for developing new technologies applicable to robotics, healthcare, and sustainable self-regulated materials. Yet, programming motion is nontrivial, and particularly at the microscale it remains a fundamental challenge. At the macroscale, movement can be controlled by conventional electric, pneumatic, or combustion-based machinery. At the nanoscale, chemistry has taken strides in enabling molecularly fueled movement. Yet in between, at the microscale, top-down fabrication becomes cumbersome and expensive, while bottom-up chemical self-assembly and amplified molecular motion does not reach the necessary sophistication. Hence, new approaches that converge top-down and bottom-up methods and enable motional complexity at the microscale are urgently needed.Synthetic anisotropic materials (e.g., liquid crystalline elastomers, LCEs) with encoded molecular anisotropy that are shaped into arbitrary geometries by top-down fabrication promise new opportunities to implement controlled actuation at the microscale. In such materials, motional complexity is directly linked to the built-in molecular anisotropy that can be “activated” by external stimuli. So far, encoding the desired patterns of molecular directionality has relied mostly on either mechanical or surface alignment techniques, which do not allow the decoupling of molecular and geometric features, severely restricting achievable material shapes and thus limiting attainable actuation patterns, unless complex multimaterial constructs are fabricated. Electromagnetic fields have recently emerged as possible alternatives to provide 3D control over local anisotropy, independent of the geometry of a given 3D object.The combination of magnetic alignment and soft lithography, in particular, provides a powerful platform for the rapid, practical, and facile production of microscale soft actuators with field-defined local anisotropy. Recent work has established the feasibility of this approach with low magnetic field strengths (in the lower mT range) and comparably simple setups used for the fabrication of the microactuators, in which magnetic fields can be engineered through arrangement of permanent magnets. This workflow gives access to microstructures with unusual spatial patterning of molecular alignment and has enabled a multitude of nontrivial deformation types that would not be possible to program by any other means at the micron scale. A range of “activating” stimuli can be used to put these structures in motion, and the type of the trigger plays a key role too: directional and dynamic stimuli (such as light) make it possible to activate the patterned anisotropic material locally and transiently, which enables one to achieve and further program motional complexity and communication in microactuators.In this Account, we will discuss recent advances in magnetic alignment of molecular anisotropy and its use in soft lithography and related fabrication approaches to create LCE microactuators. We will examine how design choices─from the molecular to the fabrication and the operational levels─control and define the achievable LCE deformations. We then address the role of stimuli in realizing the motional complexity and how one can engineer feedback within and communication between microactuator arrays fabricated by soft lithography. Overall, we outline emerging strategies that make possible a completely new approach to designing for desired sets of motions of active, microscale objects.</p

    Programming Deformations of 3D Microstructures:Opportunities Enabled by Magnetic Alignment of Liquid Crystalline Elastomers

    Get PDF
    ConspectusSynthetic structures that undergo controlled movement are crucial building blocks for developing new technologies applicable to robotics, healthcare, and sustainable self-regulated materials. Yet, programming motion is nontrivial, and particularly at the microscale it remains a fundamental challenge. At the macroscale, movement can be controlled by conventional electric, pneumatic, or combustion-based machinery. At the nanoscale, chemistry has taken strides in enabling molecularly fueled movement. Yet in between, at the microscale, top-down fabrication becomes cumbersome and expensive, while bottom-up chemical self-assembly and amplified molecular motion does not reach the necessary sophistication. Hence, new approaches that converge top-down and bottom-up methods and enable motional complexity at the microscale are urgently needed.Synthetic anisotropic materials (e.g., liquid crystalline elastomers, LCEs) with encoded molecular anisotropy that are shaped into arbitrary geometries by top-down fabrication promise new opportunities to implement controlled actuation at the microscale. In such materials, motional complexity is directly linked to the built-in molecular anisotropy that can be “activated” by external stimuli. So far, encoding the desired patterns of molecular directionality has relied mostly on either mechanical or surface alignment techniques, which do not allow the decoupling of molecular and geometric features, severely restricting achievable material shapes and thus limiting attainable actuation patterns, unless complex multimaterial constructs are fabricated. Electromagnetic fields have recently emerged as possible alternatives to provide 3D control over local anisotropy, independent of the geometry of a given 3D object.The combination of magnetic alignment and soft lithography, in particular, provides a powerful platform for the rapid, practical, and facile production of microscale soft actuators with field-defined local anisotropy. Recent work has established the feasibility of this approach with low magnetic field strengths (in the lower mT range) and comparably simple setups used for the fabrication of the microactuators, in which magnetic fields can be engineered through arrangement of permanent magnets. This workflow gives access to microstructures with unusual spatial patterning of molecular alignment and has enabled a multitude of nontrivial deformation types that would not be possible to program by any other means at the micron scale. A range of “activating” stimuli can be used to put these structures in motion, and the type of the trigger plays a key role too: directional and dynamic stimuli (such as light) make it possible to activate the patterned anisotropic material locally and transiently, which enables one to achieve and further program motional complexity and communication in microactuators.In this Account, we will discuss recent advances in magnetic alignment of molecular anisotropy and its use in soft lithography and related fabrication approaches to create LCE microactuators. We will examine how design choices─from the molecular to the fabrication and the operational levels─control and define the achievable LCE deformations. We then address the role of stimuli in realizing the motional complexity and how one can engineer feedback within and communication between microactuator arrays fabricated by soft lithography. Overall, we outline emerging strategies that make possible a completely new approach to designing for desired sets of motions of active, microscale objects.</p

    Indicators of induced subacute ruminal acidosis (SARA) in Danish Holstein cows

    Get PDF
    BACKGROUND: The prevalence of subacute ruminal acidosis (SARA) in dairy cows is high with large impact on economy and welfare. Its current field diagnosis is based on point ruminal pH measurements by oral probe or rumenocentesis. These techniques are invasive and inaccurate, and better markers for the diagnosis of SARA are needed. The goal of this study was to evaluate clinical signs of SARA and to investigate the use of blood, faecal and urinary parameters as indicators of SARA. Six lactating, rumen cannulated, Danish Holstein cows were used in a cross-over study with three periods. The first and second periods included two cows on control diet and two cows on nutritional SARA challenge. The third period only included two cows on SARA challenge. Control diet was a conventional total mixed ration [45.5% dry matter (DM), 17.8% crude protein, 43.8% neutral detergent fibre, and 22.5% acid detergent fibre (DM basis)]. SARA challenge was conducted by substituting control diet with grain pellets (50% wheat/barley) over 3 days to reach 40% grain in the diet. Ruminal pH was measured continuously. Blood samples were collected once daily at 7 h after feeding. Samples of faeces and urine were collected at feeding, and at 7 and 12 h after feeding. Blood samples were analysed for pCO2, pO2, pH, electrolytes, lactate, glucose, packed cell volume (PCV), and total plasma protein concentration. Milk composition, ruminal VFA, and pH of faeces and urine were measured. RESULTS: SARA was associated with decreased (P < 0.05) minimum ruminal, faecal and urinary pH. Daily times and areas of ruminal pH below 5.8, and 5.6 were increased to levels representative for SARA. Significant differences were detected in milk composition and ruminal VFAs. Blood calcium concentration was decreased (P < 0.05), and pCO(2) tended to be increased (P = 0.10). Significant differences were not detected in other parameters. CONCLUSIONS: SARA challenge was associated with changes in faecal and urinary pH, blood calcium concentration and pCO(2). These may be helpful as indicators of SARA. However changes were small, and diurnal variations were present. None of these parameters are able to stand alone as indicators of SARA

    Pipeline Bending Strain Measurement and Compensation Technology Based on Wavelet Neural Network

    Get PDF
    The bending strain of long distance oil and gas pipelines may lead to instability of the pipeline and failure of materials, which seriously deteriorates the transportation security of oil and gas. To locate the position of the bending strain for maintenance, an Inertial Measurement Unit (IMU) is usually adopted in a Pipeline Inspection Gauge (PIG). The attitude data of the IMU is usually acquired to calculate the bending strain in the pipe. However, because of the vibrations in the pipeline and other system noises, the resulting bending strain calculations may be incorrect. To improve the measurement precision, a method, based on wavelet neural network, was proposed. To test the proposed method experimentally, a PIG with the proposed method is used to detect a straight pipeline. It can be obtained that the proposed method has a better repeatability and convergence than the original method. Furthermore, the new method is more accurate than the original method and the accuracy of bending strain is raised by about 23% compared to original method. This paper provides a novel method for precisely inspecting bending strain of long distance oil and gas pipelines and lays a foundation for improving the precision of inspection of bending strain of long distance oil and gas pipelines

    Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols

    Get PDF
    Background: The aim of this study was to investigate the effects of two feed supplements on rumen bacterial communities of heifers fed a high grain diet. Six Holstein-Friesian heifers received one of the following dietary treatments according to a Latin square design: no supplement (control, C), 60 g/day of fumarate-malate (organic acid, O) and 100 g/day of polyphenol-essential oil (P). Rumen fluid was analyzed to assess the microbial population using Illumina sequencing and quantitative real time PCR. Results: The P treatment had the highest number of observed species (P < 0.10), Chao1 index (P < 0.05), abundance based coverage estimated (ACE) (P < 0.05), and Fisher\u2019s alpha diversity (P < 0.10). The O treatment had intermediate values between C and P treatments with the exception of the Chao1 index. The PCoA with unweighted Unifrac distance showed a separation among dietary treatments (P = 0.09), above all between the C and P (P = 0.05). The O and P treatments showed a significant increase of the family Christenenellaceae and a decline of Prevotella brevis compared to C. Additionally, the P treatment enhanced the abundance of many taxa belonging to Bacteroidetes, Firmicutes and Tenericutes phyla due to a potential antimicrobial activity of flavonoids that increased competition among bacteria. Conclusions: Organic acid and polyphenols significantly modified rumen bacterial populations during high-grain feeding in dairy heifers. In particular the polyphenol treatment increased the richness and diversity of rumen microbiota, which are usually high in conditions of physiological rumen pH and rumen function

    Aboveground dry matter and grain yield of summer maize under different varieties and densities in North China Plain

    Get PDF
    To increase summer maize grain yield in North China Plain, we conducted field experiments with three densities (3, 6, and 9 plants m-2) on two plant types (a flat type, LD981, and a compact type, LD818) during 2010 and 2011 summer maize growing seasons to study leaf area index (LAI), above ground dry matter accumulation, grain filling rate, and grain yield. The results indicated that with the density increased, the LAI in the both varieties enhanced; however, plant density at the rate of 9 plants m-2 significantly (LSD, P < 0.05) increased LAI in LD818. Increasing densities enhanced the above ground dry matter of LD818, but not of LD981. With the density increased, the grain filling rate in the both varieties declined, but during the later growing season, the grain filling rate in LD818 was higher than that in LD919. Irrespective of plant density at the rate of from 3 to 6 or 6 to 9 plants m-2, the grain No. per ear, 1,000-kernel weight, and ears No. per m2 in LD981 were all lower than those in LD818; this was the main reason why with the increased density, the population yield in LD981 was lower than that in LD818. These results indicate that in North China Plain, increasing plant density could enhance the grain yield of compact type summer maize
    corecore