91 research outputs found

    Effects of Probiotics on Gut Microbiota in Type 2 Diabetes Patients

    Get PDF
    Objective: To study the effect of probiotics on gut microbiota in Type 2 diabetes patients and its clinical application value. Methods: Select Type 2 diabetes patients to take orally probiotics for 24 weeks, collect stool samples of subjects at the baseline and end of the trial, identify and analyze gut microbiota of each sample by 16srRNA high-throughput sequencing, and compare the changes of blood glucose, blood lipid and insulin resistance before and after the intervention. Results: A total of 75 patients completed clinical observations. 16srRNA high-throughput sequencing showed that the proportion of the subjects with increased Actinobacteria and Tenericutes at the end of the trial has increased (37.8% and 75.7% respectively). The genus level analysis showed that the number of subjects with increased intestinal probiotics and with decreased conditioned pathogens all increased. Cluster analysis before and after intervention showed that the gut microbiota of samples in the same group had a higher similarity. Compared with the subjects at the baseline status, at the end of the trial after the intervention, fasting blood glucose (FBG) of the subjects significantly decreased (P<0.05), the proportion of the subjects with triglyceride (TG) and cholesterol up to standard increased, and HOMA-IR was significantly improved (P<0.05). Conclusions: Probiotics can regulate the gut microbiota of Type 2 diabetes patients, promote fasting blood glucose (FBG) to reach the standard and improve insulin resistance, and help improve lipid metabolism

    Glass and glass ceramic electrodes and solid electrolyte materials for lithium ion batteries: A review

    Get PDF
    Due to its distinct network structure, lack of a grain boundary, and isotropic qualities, glass has been the subject of extensive research. Lithium ion batteries can have their capacity and safety increased by using glassy electrode and electrolyte materials. We discuss the properties and uses of several types of glass and glass ceramic as anodes, including tin oxide glass, vanadium oxide glass, and so on. Metal-organic framework (MOF) materials are also investigated as a new generation of high-performance anode materials. We present the usage of glassy MOF materials to overcome MOF material volume change during charge and discharge, as well as the order and disorder transition of certain MOF materials during charge and discharge. The use of vanadium-based glass as a cathode material is also discussed. These materials have the potential to be employed as electrode materials in the next generation of lithium- ion batteries. In addition, the application of glass, especially sulfide glass, as an all-solid-state battery electrolyte and the effect of mixed anion effect on improving the conductivity of solid electrolyte were introduced.</p

    A high infectious simian adenovirus type 23 vector based vaccine efficiently protects common marmosets against Zika virus infection.

    Get PDF
    Zika virus (ZIKV) has spread in many countries or territories causing severe neurologic complications with potential fatal outcomes. The small primate common marmosets are susceptible to ZIKV, mimicking key features of human infection. Here, a novel simian adenovirus type 23 vector-based vaccine expressing ZIKV pre-membrane-envelope proteins (Sad23L-prM-E) was produced in high infectious titer. Due to determination of immunogenicity in mice, a single-dose of 3×108 PFU Sad23L-prM-E vaccine was intramuscularly inoculated to marmosets. This vaccine raised antibody titers of 104.07 E-specific and 103.13 neutralizing antibody (NAb), as well as robust specific IFN-γ secreting T-cell response (1,219 SFCs/106 cells) to E peptides. The vaccinated marmosets, upon challenge with a high dose of ZIKV (105 PFU) six weeks post prime immunization, reduced viremia by more than 100 folds, and the low level of detectable viral RNA (103.66) and T-cell response (>726 SFCs/106 PBMCs) were acquired 1-2 weeks post exposure to ZIKV, while non-vaccinated control marmosets developed long-term high titer of ZIKV (105.73 copies/ml) (P<0.05). No significant pathological lesions were observed in marmoset tissues. Sad23L-prM-E vaccine was detectable in spleen, liver and PBMCs at least 4 months post challenge. In conclusion, a prime immunization with Sad23L-prM-E vaccine was able to protect marmosets against ZIKV infection when exposed to a high dose of ZIKV. This Sad23L-prM-E vaccine is a promising vaccine candidate for prevention of ZIKV infection in humans

    Prime-boost vaccination of mice and rhesus macaques with two novel adenovirus vectored COVID-19 vaccine candidates.

    Get PDF
    ABSTRACTCOVID-19 vaccines are being developed urgently worldwide. Here, we constructed two adenovirus vectored COVID-19 vaccine candidates of Sad23L-nCoV-S and Ad49L-nCoV-S carrying the full-length gene of SARS-CoV-2 spike protein. The immunogenicity of two vaccines was individually evaluated in mice. Specific immune responses were observed by priming in a dose-dependent manner, and stronger responses were obtained by boosting. Furthermore, five rhesus macaques were primed with 5 × 109 PFU Sad23L-nCoV-S, followed by boosting with 5 × 109 PFU Ad49L-nCoV-S at 4-week interval. Both mice and macaques well tolerated the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost regimen induced high titers of 103.16 anti-S, 102.75 anti-RBD binding antibody and 102.38 pseudovirus neutralizing antibody (pNAb) at 2 months, while pNAb decreased gradually to 101.45 at 7 months post-priming. Robust T-cell response of IFN-γ (712.6 SFCs/106 cells), IL-2 (334 SFCs/106 cells) and intracellular IFN-γ in CD4+/CD8+ T cell (0.39%/0.55%) to S peptides were detected in vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials

    Multi-energy conversion based on game theory in the industrial interconnection.

    No full text
    The multi-energy conversion system (MCS) plays an important role in improving the utilization of energy resources and realizing the energy transition. With the application of the new generation of information technologies, the new MCS can realize real-time information interaction, multi-energy collaboration, and real-time demand response, in which energy suppliers can intelligently motivate consumers' energy use behavior. In this paper, an MCS coupled with a cloud platform is proposed to address information explosion and data security issues. Due to the development of Internet technology, the increasing energy data, and the serious energy coupling, it is difficult for traditional optimization methods to deal with the interaction between participants of the MCS. Therefore, the non-cooperative game is used to formulate the interactions between participants with the aim of maximizing the energy suppliers' profit and minimizing the customers' cost. It is proved that the game model is an ordinary game with one Nash equilibrium. The simulation was performed with a gradient projection algorithm and the results show that the proposed MCS improves energy utilization efficiency through energy conversion while ensuring consumer satisfaction, and benefits both the customers and suppliers by reducing the energy consumption cost and the peak load demand, which effectively improve the supply quality and enrich the energy consumption patterns

    Modulation of the Electronic Properties of Ultrathin Black Phosphorus by Strain and Electrical Field

    No full text
    The structural and electronic properties of the bulk and ultrathin black phosphorus and the effects of in-plane strain and out-of-plane electrical field on the electronic structure of phosphorene are investigated using first-principles methods. The computed results show that the bulk and few-layer black phosphorus from monolayer to six-layer demonstrates inherent direct bandgap features ranging from 0.5 to 1.6 eV. Interestingly, the band structures of the bulk and few-layer black phosphorus from X point via A point to Y point present degenerate distribution, which shows totally different partial charge dispersions. Moreover, strong anisotropy in regard to carrier effective mass has been observed along different directions. The response of phosphorene to in-plane strain is diverse. The bandgap monotonically decreases with increasing compressive strain, and semiconductor-to-metal transition occurs for phosphorene when the biaxial compressive reaches −9%. Tensile strain first enlarges the gap until the strain reaches around 4%, after which the bandgap exhibits a descending relationship with tensile strain. The bandgaps of the pristine and deformed phosphorene can also be continuously modulated by the electrical field and finally close up at about 15 V/nm. Besides, the electron and hole effective mass along different directions exhibits different responses to the combined impact of strain and electrical field
    corecore