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Common marmosets infected with GB virus-B (GBV-B) chimeras containing hepatitis

C virus (HCV) core and envelope proteins (CE1E2p7) developed more severe hepatitis

than those infected with HCV envelope proteins (E1E2p7), suggesting that HCV core

protein might be involved in the pathogenesis of viral hepatitis. The potential role of

HCV core in hepatic inflammation was investigated. Six individual cDNA libraries of liver

tissues from HCV CE1E2p7 or E1E2p7 chimera-infected marmosets (three animals per

group) were constructed and sequenced. By differential expression gene analysis, 30 of

632 mRNA transcripts were correlated with the immune system process, which might

be associated with hepatitis. A protein–protein interaction network was constituted by

STRING database based on these 30 differentially expressed genes (DEGs), showing that

IL-32 might play a central regulatory role in HCV core-related hepatitis. To investigate

the effect of HCV core protein on IL-32 production, HCV core expressing and mock

constructs were transfected into Huh7 cells. IL-32 mRNA and secretion protein were

detected at significantly higher levels in cells expressing HCV core protein than in

those without HCV core expression (P < 0.01 and P < 0.001, respectively). By KEGG

enrichment analysis and using the specific signaling pathway inhibitor LY294002 for

inhibition of PI3K, IL-32 expression was significantly reduced (P < 0.001). In conclusion,

HCV core protein induces an increase of IL-32 expression via the PI3K pathway in hepatic

cells, which played a major role in development of HCV-related severe hepatitis.

Keywords: HCV core protein, viral hepatic inflammation, IL-32, PI3K pathway, common marmosets

INTRODUCTION

Hepatitis C virus (HCV), a serious infectious disease that is transmitted through blood, is one of
the most common viral causes of liver disease, affecting more than 170 million people worldwide.
Chronic HCV infection causes chronic viral hepatitis C and liver dysfunction, which relates to the
progression of cirrhosis and human hepatocellular carcinoma (HCC) (Choo et al., 1991). HCV
is a single-stranded RNA flavivirus and has a 9.6-kilobase genome (kb) that encodes 10 proteins:
structural core and envelope E1, E2, and p7, non-structural NS2, NS3, NS4A, NS4B, NS5A, and
NS5B, respectively. Some of these proteins could interact with host cellular factors and promote
tumor growth in vivo and in vitro (Ray et al., 1996; Gale et al., 1999; Park et al., 2000; Lerat
et al., 2002). Previous studies found that core, NS3, NS5A, and NS5B could affect cell proliferation
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(Machida et al., 2001; Massague, 2004; Hara et al., 2006) or
enhance oncogenic transformation (Banerjee et al., 2010).

HCV core protein is involved in the regulation of liver cell
proliferation and cell transformation. It is thought that HCV
is an important factor leading to HCC, although the molecular
mechanisms determining such functions of virus remained
unclear. HCV core protein may interact with transcription
factors of p53, p21, NF-kB, and 14-3-3 protein, which are
known to be involved in the development of HCC (Banerjee
et al., 2010). HCV core protein could inhibit apoptosis, which
is mediated by TNF-α (Ray et al., 1998; Marusawa et al., 1999)
and interacted with TNF receptor 1 and lymphotoxin-β receptor
that is involved in apoptotic signaling (Marusawa et al., 1999).
HCV core protein expression reportedly affected the cell cycle
of hepatocytes (HepG2) by increasing the levels of cell-cycle-
dependent kinase inhibitor (CdkI) p21 (Nguyen et al., 2003).
Common marmosets (Callithrix jacchus) are a kind of New
World small primates and can be infected byGB virus B (GBV-B),
a flavivirus closer to HCV (Bukh et al., 1999). Marmosets infected
with GBV-B exhibited typical viral hepatitis similar to hepatitis
C patients (Lanford et al., 2003; Jacob et al., 2004) and could
be used as a surrogate animal model for HCV infection (Bright
et al., 2004). In order to explore the core protein function, the
marmosets infected with chimeric viruses of HCV structural core
and envelope protein (CE1E2p7) or envelope protein (E1E2p7)
sequences integrated within GBV-B genome were comparatively
analyzed in combination with previous infected animals (Li et al.,
2014).

De novo transcriptome sequencing has been used widely for
studying specific gene expression patterns in different tissues or
at different developmental stages, prediction of new transcripts
(Denoeud et al., 2008), identification of alternative splicing
(Lin et al., 2016), detection of single-nucleotide polymorphisms
(SNPs) (Trick et al., 2009), and discovery of insertions/deletions
in transcripts (Trapnell et al., 2010). In this study, cDNA
libraries of liver tissue samples from two groups of marmosets
infected with HCV-CE1E2p7/GBV-B or HCV-E1E2p7/GBV-B
chimeras were sequenced. The IL-32 expression induced by HCV
core protein was identified, which was demonstrated to play
a critical role in occurrence of hepatic inflammation during
HCV infection.

MATERIALS AND METHODS

Ethics Statement
The use of commonmarmoset experimentation was approved by
the Southern Medical University (SMU) Animal Care and Use
Committee (permit numbers: SYXK[Yue]2010-0056). All animal
care and procedures (NFYYLASOP-037) were in accordance with
national and institutional policies for animal health and well-
being. All efforts were made to minimize suffering of animals.

Animal Liver Tissue Samples
Six common marmosets (C. jacchus) were obtained from Tianjin
Medical University and individually fed in Laboratory Animal
Research Center of Nanfang Hospital, Guangzhou, China. Liver
tissue samples were collected specifically for this study from the

animals infected with HCV/GBV-B chimeras in our previous
study (Li et al., 2014).

Histopathological Examination
Small sections of liver tissue from left, right, and caudate lobes
of each animal liver were examined with hematoxylin and eosin
(H&E) staining as described previously (Li et al., 2014). The
necrosis and inflammation were graded on a 0–18 scale according
to the modified HAI system (Knodell et al., 1981).

CDNA Libraries and Sequencing
Total RNA was isolated from liver tissue samples using
TRIzol reagents according to the manufacturer’s introduction
(Invitrogen, Carlsbad, USA). Hepatic mRNAs were isolated
from the extracted total RNA by Oligo (dT) after treatment
with DNase I and then reversely transcribed to cDNAs. The
purified cDNA fragments were connected with adapters and
the suitable fragments were amplified by PCR. The quality
control (QC) was implemented in cDNA library establishment
by using Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-
Time PCR System. The cDNA libraries were sequenced by using
Illumina HiSeq4000.

Sequence Data Processing and Analysis
In order to get clean sequencing data, the raw sequence reads
were filtered for the low-quality sequences by eliminating the
adaptors or a large amount of unknown sequencing reads.
After mapping clean reads to reference genome, novel transcript
prediction, SNP and INDEL detection, and differentially splicing
gene (DSG) detection were performed. When obtaining novel
transcripts, the coding sequences were compared with references
to obtain a complete reference, and then gene expression analysis
against this reference was performed. Differentially expressed
genes (DEGs) were detected, in which possible function and
pathway were analyzed by the Gene Ontology (GO) annotation
system and the KEGG database, respectively. GO terms or
pathways with a corrected P ≤ 0.05 were considered significantly
enriched for DEGs. GO annotation results were analyzed by the
Web Gene Ontology Annotation Plot (WEGO) software.

Cells and Plasmids
Huh7 (human hepatocellular cell line) cells were cultured at 37◦C
in a 5% CO2 incubator in Dulbecco’s modified Eagle medium
(DMEM) supplemented with 10% FBS, 100 g/ml streptomycin,
and 100 g/ml penicillin. The HCV or GBV-B core-expressing
plasmid pcDNA3.1 constructs were generated by inserting either
the full-length HCV core (genotype 1b) or the GBV-B core
sequence as described previously (Li et al., 2014). T-vector
containing the same sequence of HCV core or GBV-B core was
used as non-expressing construct.

Cell Transfection and Inhibition
A density of 4 × 105 Huh7 cells in 2ml of complete RPMI 1640
medium without antibiotics were plated in a 6-well plate for
24 h incubation. For transfection, 10 µl of Lipofectamine 2000
(Invitrogen) was diluted in 250 µl of FBS and antibiotic-free
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Opti-MEM (Invitrogen) and incubated for 5min. Meanwhile, 2-
µg DNA constructs (pcDNA3.1-HCV or -GBV-B core, T-vector-
HCV or -GBV-B core) were diluted in 250 µl of Opti-MEM and
incubated for 5min. Then, the mixture of Lipofectamine and
construct solutions and 1.5ml of Opti-MEM were added onto
the cells and incubated for 6 h. The medium was replaced with
10% FBS RPMI 1640 and incubated for 24–72 h for detection.
Inhibition of signaling pathway in transfected Huh7 cells was
conducted by incubation with the specific inhibitors (LY294002,
SB203580, and SH-4-54) at different concentrations (5, 10, and
20µM), respectively.

Verification by Quantitative Real-Time
RT-PCR
Total RNA of liver tissue samples or Huh7 cells were extracted
using TRIzol method (Invitrogen) and reverse-transcripted using
Reverse Transcription System according to the manufacturer’s
instructions (Roche, Basel, Switzerland). RT-PCR reactions were
performed with SYBR Master Mix following the manufacturer’s
protocol (Roche, Basel, Switzerland). Amplification reactions
were started for 2min at 95◦C, and then performed for 40
cycles at 95◦C for 15 s, 55◦C for 30 s, and 72◦C for 30 s. All
quantifications were carried out in triplicate and glyceraldehyde-
3-phosphatedehydrogenase (GAPDH) was taken as internal
control. Results were presented as mean value ± standard
deviation (SD). IL-32-specific primers included a forward primer,
5′-CGACTTCAGAGAGTGCATGTT-3′, and a reverse primer,
5′-TGTTGCCTCTGAGTCGTAATTC-3′. The primers for the
other analyzed proteins (IL-6, TNFa, IL18, IL8, IL1b, and
GAPDH) were cited appropriately (Fujii et al., 2013; Jagessar
et al., 2013). The fold change (FC) for the level of mRNA
was calculated by the following equations: 1CT = 1CT(target)
– 1CT(GAPDH); 11CT = 1CT(infected) – 1CT(control);
mRNA fold change= 2–11CT.

Immunohistochemistry
Immunohistochemical staining (IHC) was performed as
previously described (Li et al., 2014). Briefly, after dewaxing
and dehydration, the tissue slides were incubated with anti-
IL-32 antibody (BioLegend, San Diego, CA). Then, the
HRP-conjugated secondary antibody (PV-6002 Two-step IHC
Detection Reagent, ZSGB company, Beijing, China) was added
to the tissue sections and incubated for 30min. Slides were
developed with DAB and counterstained with hematoxylin,
and then dehydrating in ethanol and xylene. The scoring was
evaluated according to the intensity of staining and the frequency
of stained cells (Koo et al., 2009).

Enzyme Immunoassay (EIA)
The amount of IL-32 in culture supernatants was measured
by a kit with Human IL-32 DuoSet ELISA (R&D Systems,
Minneapolis, MN, USA).

Immunofluorescence Staining (IFS)
Huh7 cells were seeded onto 24-well plates and transfected
with pcDNA3.1-HCV core, pcDNA3.1-GBV-B core, or mock
plasmid by Lipofectamine 2000 (Invitrogen, Guangzhou, China).
The monoclonal antibody (mAb) to HCV core (C1F5 clone)

or GBV-B core (1E5 clone) was used as primary antibody
provided in the laboratory (Li et al., 2014), whereas Alexa
Fluor 594 (red) goat anti-mouse IgG (Invitrogen) was used
as secondary antibody for detection of the core protein in
transfected cells. Diamidinophenylindoldiacetate (DAPI) was
added to stain cell nuclei.

Western Blot
Cells were lysed with RIPA buffer containing protease inhibitors
at 24–72 h after transfection or treatment, and total protein
lysate of each group was separated by 12% SDS-PAGE, and then
transferred to a PVDF membrane (Millipore). The membranes
were saturated with blocking solution (containing 1% BSA)
for 2 h at room temperature and then incubated with specific
primary antibody overnight at 4◦C. After washing with PBST,
the membranes were incubated with HRP-conjugated secondary
antibody for 1 h at room temperature. Immunostaining was
detected using an ECL substrate and GAPDH served as the
internal reference.

Statistical Analysis
All experiments were performed at least three times
independently. The data were analyzed using the statistical
package SPSS v. 16.0. The results were presented as the mean ±

SD. Difference between groups were analyzed by using Student’s
t-test, and P < 0.05 was considered statistically significant.

RESULTS

Difference of Necroinflammatory Grade in
Histopathological Changes of Liver
Tissues Between Marmosets Infected by
HCV Chimeras With or Without HCV Core
Protein
Among HCV/GBV-B chimera-infected marmoset models, we
observed that the necroinflammatory grades of pathological
changes in liver tissues from HCV-CE1E2p7/GBV-B chimera-
infected marmosets (M3, M6, and M15) were obviously severe
than those from marmosets (M1, M10, and M18) infected by
HCV-E1E2p7/GBV-B chimera without HCV core protein. To
further confirm this phenomenon, the liver tissue sections from
left, right, and caudate lobes of each animal liver were examined
for histopathological changes (Figure 1A). The HAI scores were
evaluated for significant difference between two chimeric virus-
infected marmosets with HCV core or without HCV core protein
(mean of HAI score: 3.89 vs. 1.56; Table 1 and Figure 1B, P <

0.001). The viral loads in the liver tissues at the time points
used for cDNA library construction and sequencing are shown
in Figure 1C. The data suggested that HCV core might play a
role in leading to severely hepatic inflammation of HCV chimera-
infected marmosets.

De novo Assembly of Illumina Sequencing
Reads and Annotation of DEGs
To reveal the difference of genomic transcripts in liver tissues
between HCV chimera-infected marmosets with or without
HCV core protein, six cDNA libraries of individual liver tissues
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FIGURE 1 | Difference of necroinflammatory grade in histopathological changes of liver tissues between marmosets infected by HCV chimeras with or without HCV

core protein. (A) H&E staining was conducted on the liver tissues collected by left, right, and caudate lobes of each liver from marmosets. The original magnification

was × 800. (a) Lymphocytic infiltrates, (b) ballooning degeneration (edema), (c) ground glass liver cells, and (d) eosinophilic cells. (B) Necroinflammatory grades in

histopathological changes of liver tissues were scored by the modified HAI system, in which inflammation grades were on a scale of 0 to 18. ***P < 0.001. (C) The viral

loads in the liver tissues infected with HCV-CE1E2p7/GBV-B or HCV-E1E2p7/GBV-B for the time points used for cDNA library construction and sequencing.

from two groups of HCV-CE1E2p7 or -E1E2p7 chimera-infected
marmosets were constructed and sequenced in a single run.
After mapping the sequence reads against reference genomes
and the reconstructed transcripts, 26,758 novel transcripts were
obtained, in which 17,413 were previously unknown. Splicing
events for known genes generated 1,113 novel coding transcripts
with unknown features, and the remaining 8,232 were long
non-coding RNAs.

A transcript-level expression analysis was conducted to detect
the differentially expressed mRNAs between two groups of
HCV chimera-infected liver tissues using ballgown R package.
Taking P < 0.05 and fold change (FC) > 1.5 as cutoff, 235
mRNAs were found to be down-regulated, while 397 mRNAs
were up-regulated in the group infected by CE1E2p7 chimera
with HCV core protein (Figure 2A). The MA plot (Figure 2B)
and the volcano plot (Figure 2C) showed the distribution and
significance of the differentially expressed genes (DEGs).

Using DEGs, we performed GO classification and functional
enrichment. Among 632 DEGs, 30 genes were correlated with
immune system process, which played an important role in
hepatitis and contained in biological process (Figure 2D). By
comprehensive analysis of data obtained from these 30 DEGs, a
protein–protein interaction network was constituted by STRING
database (Figure 2E), which indicated that IL-32 played a core
regulatory role in the immune system. To validate the RNA-
seq results, the relative fold changes of IL-32 and the five DEGs
including IL-6, TNF-α, IL-18, IL-8, and IL-1β that correlated with
IL-32 in this network in liver tissue samples from HCV CE1E2p7
or E1E2p7 chimera-infected marmosets were measured by RT-
qPCR (Figure 2F). The Pearson correlation of fold changes in
gene expression between RT-qPCR and RNA-seq analysis was
significant (Figure 2G), which suggested that RT-qPCR results
were consistent with RNA-seq results. Immunohistochemical
staining results showed that the relative mean density of
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TABLE 1 | Histopathological observations.

Virus Marmoset Time point

(week)

Necroinflammatory grade*

Left

lobe

Right

lobe

Caudate

lobe

Mean

value

CE1E2p7 M3 26 3 4 4 3.67

M6 20 4 4 4 4

M15 44 4 4 4 4

E1E2p7 M1 37 4 2 2 2.67

M10 29 1 1 1 1

M18 17 1 1 1 1

*The histological status was determined by the modified HAI system (Kondell score),

which grades necrosis and inflammation on a scale of 0–18 (periportal inflammation and

necrosis, 0–10; lobular inflammation and necrosis, 0–4; portal inflammation, 0–4).

hepatic IL-32 staining in liver tissues from HCV-CE1E2p7/GBV-
B chimera-infected marmosets was significantly increased
compared with that of animals infected with HCV-E1E2p7/GBV-
B chimera (mean of IHC scores: 8.63 vs. 3.23; Figures 3A,B,
P < 0.01). The levels of IL-32 expression (IHC scoring) in
liver tissues were positively correlated with the HAI scores of
histopathological changes in liver tissues from six marmosets
(Figure 3C, P = 0.001, R2 = 0.9462), but not correlated with
viral loads.

As shown in Figures 3D,E, level of hepatic or
serum IL-32 from HCV-CE1E2p7/GBV-B chimera-
infected marmosets was significantly higher than
that from HCV-E1E2p7/GBV-B chimera-infected
animals (P < 0.05).

HCV Core Protein Induces IL-32
Production in Huh7 Cells
To investigate the effect of HCV core protein on IL-32
expression, pcDNA3.1-HCV core, pcDNA3.1-GBV-B core,
and mock construct DNAs were transfected into Huh7
cells. Forty-eight hours later, the production of HCV core
or GBV-B core protein was confirmed in the expressing
vector-transfected cells but not in mock plasmid-transfected
cells by immunofluorescence staining (Figure 4A) and
Western blot (Figures 4B,C), suggesting that HCV core or
GBV-B core protein was present in the cells, respectively.
Meanwhile, IL-32 mRNA from transfected cells was measured
by RT-qPCR (Figure 5A), showing that IL-32 mRNA level
increased significantly in the cells transfected with HCV core
expressing construct. It was five times higher than that in
the cells transfected with GBV-B core expressing construct (P
< 0.01).

To confirm the effect of HCV core protein on IL-32
expression, culture supernatants from transfected cells
were tested for secreted IL-32 protein by ELISA. As
shown in Figure 5B, IL-32 protein concentration was
twofold higher in the supernatant of pcDNA3.1-HCV core
construct-transfected cells than that in pcDNA3.1-GBV-B
core-transfected cells (P < 0.001). The results suggested

FIGURE 2 | The RNA-seq results revealed the critical role of HCV core in the

development of severe hepatic inflammation in HCV/GBV-B chimera-infected

marmosets. (A) Among 632 DEGs, 235 genes were found to be

down-regulated, while 397 genes were up-regulated in the group infected by

CE1E2p7 chimera with HCV core protein. The MA plot (B) and the volcano

plot (C) showed the distribution and significance of the differentially expressed

genes (DEGs). (D) Among 632 DEGs, 30 genes were correlated with immune

system process, which were contained in the biological process when

performing GO classification and functional enrichment. (E) IL-32 played a

core regulatory role in protein–protein interaction network constituted by the

30 DEGs involved in immune system process. The interaction network map

was constructed by STRING database. Green indicated up-regulation, red

indicated down-regulation, and blue indicated the DEGs correlated with IL-32,

which was marked in yellow. The data were obtained from the transcriptome

sequencing results. (F) The relative fold changes of IL-32 mRNA and the DEGs

correlated with IL-32 in samples of marmoset’s liver tissues were quantified by

RT-qPCR and RNA-seq. Total RNA of liver tissue samples were extracted and

reversely transcripted. All quantitative measurements were carried out in

triplicate and normalized to GAPDH control in every reaction. Results were

expressed as mean value ± standard deviation (SD) from three independent

experiments. (G) Pearson correlation of fold changes (FC) in gene expression

between RT-qPCR results and RNA-seq results (P < 0.01).
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FIGURE 3 | IL-32 protein was detected in liver tissues or sera from HCV chimera-infected marmosets. (A) Immunohistochemical staining of IL-32 protein in liver

tissues from marmosets M3, M6, and M15 infected with HCV-CE1E2p7 chimera, or M1, M10, and M18 infected with HCV-E1E2p7 chimera. The original

magnification was × 200. (B) The IHC score was assessed according to the intensity of staining (no staining, 0; weak staining, 1; moderate staining, 2; strong

staining, 3) and the extent of stained cells (0%, 0; 1 to 10%, 1; 11 to 50%, 2; 51 to 80%, 3; 81 to 100%, 4). The final score was determined by multiplying the intensity

scores by the extent of positivity scores of stained cells. The difference between HCV CE1E2p7 and E1E2p7 chimera-infected marmosets was significant (P < 0.01).

(C) Level of IL-32 expression in liver tissues from six marmosets is correlated with necroinflammatory grades (HAI scores) in histopathological changes of liver tissues

scored by the modified HAI. (D) Liver IL-32 protein or (E) serum IL-32 protein from six marmosets (the last week before sacrifice) was tested by ELISA. The difference

between the two groups was significant (P < 0.05). Data were presented as mean value ± SD from three separate experiments. *P < 0.05, **P < 0.01.

that the presence of HCV core protein could significantly
increase IL-32 secretion in the supernatant of transfected
Huh7 cells.

To eliminate the possibility that HCV core DNA might
induce IL-32 expression, T-vector-HCV core, T-vector-GBV-B
core, and empty-pcDNA3.1 or empty-T-vector mock plasmids
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FIGURE 4 | The expression of HCV core or GBV-B core protein was confirmed in the expressing vector transfected Huh7 cells. (A) Immunofluorescence staining for

HCV or GBV-B core protein in transfected Huh7 cells. Huh7 cells were seeded onto 24-well plates and transfected with 1 µg of pcDNA3.1-HCV core or

pcDNA3.1-GBV-B core or mock plasmid, respectively. After 48 h, the cells were stained with mAb to HCV core or GBV-B core. Cell nuclei were stained in blue with

DAPI. Original magnification was ×200. (B,C) Western blot analysis for HCV core and GBV-B core proteins in transfected Huh7 cells at the time point of 24, 48, and

72 h. *P < 0.05 vs. the 24-h group. All experiments were repeated three times.

were transfected into Huh7 cells. Forty-eight hours later, IL-32
at mRNA and supernatant protein levels from transfected Huh7
cells were measured by RT-qPCR and ELISA, respectively. The
results showed no difference among T-vectorial HCV core DNA,
GBV-B core DNA, and empty-vector controls (Figures 5A,B),
suggesting that only HCV core protein could induce IL-32
expression in these cells.

HCV Core-Induced IL-32 Expression via
the PI3K/AKT Pathway
Since little was known about the regulation of IL-32 production,
we further examined which signaling pathway was involved in
production of IL-32 stimulated by HCV core protein in Huh7
cells. Here, 562 out of 632 DEGs were categorized to 268 KEGG
pathways. To identify the most impacted pathways, a KEGG
enrichment analysis was performed for HCV-CE1E2p7/GBV-B
chimera-infected marmosets, which contained 92 pathways of
P < 0.05. Among these pathways, PI3K/AKT, JAK/STAT, and
MAPK were previously described relative to IL-32 (Nishida et al.,
2008; Ko et al., 2011; Moschen et al., 2011).

To identify which pathway was involved in HCV core
protein for inducing IL-32 production, the specific signaling
pathway inhibitors of LY294002 (PI3K inhibitor), SB203580
(MAPK inhibitor), and SH-4-54 (STAT inhibitor) were utilized

in pcDNA3.1-HCV core construct-transfected Huh7 cells. Levels
of IL-32 mRNA transcripts and proteins were quantified by RT-
qPCR and ELISA, respectively (Figures 5C,D). Approximately
60–80% reduction of IL-32 mRNA level in transfected cells
was observed by PI3K and MAPK inhibitors (P < 0.001;
Figure 5C), while a 46% reduction of IL-32 protein secretion in
the supernatant of transfected cells was solely found by PI3K
inhibitor (P < 0.001; Figure 5D). Furthermore, the levels of
PI3K, pAKT, AKT, and IL-32 expression were quantified by
Western blot (Figure 5E). When compared with the control
group, HCV core protein increased the expression levels of
PI3K, pAKT, and IL-32 in Huh7 cells. In contrast, when
compared with the HCV core expression group, the inhibitor
LY294002 (with concentrations of 5, 10, and 20µM) inhibited
the expression of PI3K, pAKT, and IL-32 in Huh7 cells in
a dose-dependent fashion (Figure 5F). These results suggested
that HCV core protein may induce IL-32 production via the
PI3K/AKT pathway. Further, to identify the regulatory role
of IL-32 associating with inflammatory cytokines, levels of
mRNA transcripts for IL-6, IL-1β, TNFα, IL-18, and IL-8
were detected from Huh7 cells in 48 h incubated with the
supernatants from pcDNA3.1-HCV core-transfected Huh7 cells
only (Figure 5Ga), supernatants from transfected Huh7 cells
treated with 20µM LY294002 (Figure 5Gb), and anti-IL-32
antibody neutralized supernatants from transfected Huh7 cells

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7 April 2020 | Volume 10 | Article 135

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Liu et al. HCV Core Inducing Hepatic Inflammation

FIGURE 5 | HCV core-induced IL-32 expression via the PI3K/AKT pathway.

(A) The level of IL-32 mRNA (relative fold change, FC) in samples of Huh7 cells

transfected for 48 h with pcDNA3.1-HCV core, pcDNA3.1-GBV-B core, or

mock plasmid was quantified by RT-qPCR. (B) The level of IL-32 protein in

culture supernatants of Huh7 cells in 48 h after transfecting with

pcDNA3.1-HCV core, pcDNA3.1-GBV-B core, or mock plasmid was

quantified by ELISA. (C–E) Inhibition of HCV core induced IL-32 expression in

Huh7 cells by specific signaling pathway inhibitors. Huh7 cells were treated

with the specific signaling pathway inhibitors of LY294002 (PI3K inhibitor),

SB203580 (MAPK inhibitor), and SH-4-54 (STAT inhibitor), respectively, by

following transfection with pcDNA3.1-HCV core construct DNA. After 48 h, (C)

levels of IL-32 mRNA transcripts and (D) secretion protein were quantified by

RT-qPCR and ELISA. Huh7 cells transfected with pcDNA3.1-HCV core but

without inhibitor were used as negative control (NC). A reduction of IL-32

mRNA or protein in transfected cells was compared between inhibitor and

control. (E,F) The levels of downstream molecules including PI3K, AKT, pAKT,

(Continued)

FIGURE 5 | and IL-32 were detected by Western blot for analyzing PI3K

pathway. Huh7 cells transfected with mock plasmids were used as control.

PI3K and IL-32 were normalized against GAPDH, and pAKT were normalized

against GAPDH as well as total AKT. #P < 0.05 vs. control; *P < 0.05 vs. HCV

core group; **P < 0.01; ***P < 0.001. (G) The level of inflammatory cytokine

mRNAs from Huh7 cells in 48 h incubated with the (a) supernatants from

pcDNA3.1-HCV core-transfected Huh7 cells; (b) supernatants from

pcDNA3.1-HCV core-transfected Huh7 cells treated with 20µM LY294002; (c)

anti-IL-32 antibody neutralized supernatants from pcDNA3.1-HCV

core-transfected Huh7 cells. The levels of inflammatory cytokine mRNAs from

Huh7 cells in 48 h incubated with supernatants from mock plasmid-transfected

Huh7 cells were set as controls. *P < 0.05 vs. control; **P < 0.01 vs. control.

Data were presented as mean value ± SD from three separate experiments, in

which each measurement was carried out in triplicate.

(Figure 5Gc), respectively. Compared with the controls from
mock plasmid-transfected Huh7 cells, these five inflammatory
cytokine mRNAs were significantly elevated, especially 10.96-
fold for TNFα and 19.13-fold for IL-8 (Figure 5Ga). After
treating with LY294002 or anti-IL32 antibody, these mRNA levels
decreased significantly (Figure 5Gb,c). These results suggested
that IL-32 might act as a central role in the hepatic inflammation
regulatory network.

DISCUSSION

Chronic HCV infection is a risk factor for development of hepatic
steatosis, cirrhosis, and HCC (Raimondi et al., 2009). However,
the exact molecular pathogenesis of chronic HCV infection-
mediated hepatitis is not entirely explored. A study suggested that
expression of the core protein increased cell proliferation, DNA
synthesis, apoptosis, cell cycle progression, cell transformation,
steatosis, and HCC in transgenic mice (Moriya et al., 1998).
Looking back at our previously reported study (Li et al.,
2014), we observed that the marmosets infected with HCV
core protein-containing viral chimera experienced more severe
hepatic inflammation than animals infected with viral chimera
that did not express HCV core protein. These data suggested
that HCV core might lead to hepatic inflammation. Despite
the availability of complete genome sequence from marmosets
(Worley et al., 2014), no data covers the transcriptome of liver
tissue for marmosets. Based on the mRNA transcripts of liver
tissues from HCV chimera-infected marmosets in the present
study, we found that the presence of HCV core protein was
positively correlated with the severe viral hepatitis in marmosets
(Figure 3C), which might be a stage toward progression to
HCC as demonstrated previously in mice for HCV core protein
inducing HCC (Moriya et al., 1998).

In this study, the complexity of liver transcriptome of
marmosets was analyzed by high-throughput RNA sequencing.
We found 632 genes with expression patterns differentiating
between two groups of marmosets infected with HCV CE1E2p7
chimera and E1E2p7 chimera, respectively. Among those
mRNA transcripts, IL-32 was considered the most important
factor leading to hepatitis in infected marmosets. IL-32 is
a cytokine produced by T-cells, natural killer (NK) cells,
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monocyte/macrophage, and epithelial cells, that includes six
isoforms of IL-32α, β, γ, δ, ε, and ζ. IL-32α is the most abundant
isoform (Ko et al., 2011). IL-32 could activate the NF-kB and
p38-MAPK pathways to induce proinflammatory cytokines (IL-
1β, IL-6, and TNFα) and chemokines (IL-8 and MIP-2) by
stimulating monocytes and macrophages (Yousif et al., 2013).
A previous study indicated that the levels of IL-32 mRNA were
significantly correlated with hepatic inflammation and that HCV
infection of Huh 7.5 cells increases IL-32 expression (Moschen
et al., 2011). However, this study indicated that HCV infection
induced IL-32 transcription in Huh7.5 cells without clarifying
whether the IL-32 expression was induced by HCV core protein.
Further, to confirm IL-32 relating to the hepatic inflammation
regulatory network, five inflammatory cytokine mRNAs (IL-6,
IL-1β, TNFα, IL-18, and IL-8) were measured from Huh7 cells
incubated with or without the functional IL-32 (Figure 5G). The
data supported the idea that IL-32 promoted the production
of inflammatory cytokines. To test the hypothesis that HCV
core protein induced IL-32 expression, pcDNA3.1-HCV core
or -GBV-B core expressing constructs, pT-Vector-HCV core
or -GBV-B core non-expressing constructs, and empty-vector
controls were transfected into Huh7 cells. We first found that
HCV core protein expression induced an increase of IL-32
mRNA transcripts and secretion proteins in transfected cells.
Since IL-32 exerts pro-inflammatory effects in various cell types
including epithelial, endothelial, and mononuclear cells (Kim
et al., 2005; Nold-Petry et al., 2009), our results might explain the
important role of HCV core protein in developing viral hepatitis.

As described previously, the PI3K/AKT pathway regulates
IL-32α production in human alveolar epithelial cells (Ko et al.,
2011) and also mediates IL-32α induction in human pancreatic
periacinar myofibroblasts (Nishida et al., 2008). MAPK signaling
pathway is also related to MyD88-dependent IL-32α production
in IL-1β-stimulated human alveolar epithelial cells (Moschen
et al., 2011). TNFα alone or in combination with IFNα could
induce IL-32 production in Huh7.5 cells as well as in Hep3B cells.
The IL-32 induction was completely abrogated by inhibition of
NF-kB signaling (by BAY11-7082) but not JAK/STAT signaling
(by Jak Inhibitor I). In contrast to hepatocytes, IL32 induction
was dependent on bothNF-kB and JAK/STAT signaling pathways
in CD14+ monocytes (Moschen et al., 2011). Since the NF-
kB pathway was not found in the 92 pathways obtained
from DEG sequencing results (P < 0.05), we focused on
PI3K/AKT, JAK/STAT, and MAPK as the potential targets for the
pathways involved in IL-32 induction stimulated by HCV core
protein. To explore the critical role of those signaling pathways,
specific signaling pathway inhibitors of PI3K (LY294002), MAPK
(SB203580), or STAT inhibitor (SH-4-54) were added to HCV
core expressing construct-transfected Huh7 cells. A reduction
of IL-32 mRNA level in transfected cells was obtained by PI3K
and MAPK inhibitors, while only a reduction of secretion IL-
32 protein was identified in the supernatant of transfected
cells by PI3K inhibitor. This suggested that HCV core protein-
induced IL-32 production wasmainly through the PI3K pathway.
Western blot results show that (Figures 5E,F) HCV core protein
increased the expression of PI3K, pAKT, and IL-32 in Huh7 cells.
In contrast, LY294002 inhibited the expressions of PI3K, pAKT,

and IL-32 in Huh7 cells. Thus, the changes in the expression
levels of IL-32 inHCV core construct-transfectedHuh7 cells were
regulated by the PI3K/AKT signaling pathway.

The secretion of IL-32α could be stimulated by IL-1β in
A549 cells, regulated by the PI3K/AKT signaling pathway, and
suppressed by inhibitors of SFKs, PKCδ, or p38 (Ko et al.,
2011). IL-32 could also be constitutively produced in Huh7.5
cells stimulated by IL-1β and TNFα (Moschen et al., 2011), and
it also could be induced in monocyte by HCV (Pang et al.,
2016). IL-1β acts an important role in various cellular responses
such as inflammation (Charles, 1997). The binding of IL-1β to
type I IL-1 receptors (IL-1RI) could trigger recruitment of the
adapter protein MyD88, which could affect PI3K/AKT signaling
pathway by regulating PKCδ and PI3K (Braddock and Quinn,
2004). HCV could activate production of IL-1β through the
NLRP3 inflammasome pathway (Ramos et al., 2012), which could
show response in both acute and chronic inflammation (Allen
et al., 2009). The exact mechanism by which HCV core protein
stimulates IL-32 expression and secretion through the PI3K/AKT
pathway may be dependent on inflammatory cytokines like IL-1β
or TNFα. As the relationship between HCV core and IL-1β (or
TNFα) was not explored in this study, we focused on how HCV
core protein affected PI3K/AKT signaling pathway, andwewould
examine that if IL-1β or TNFα was involved in this progression
in the future.

In summary, an increase of IL-32 production was induced
by HCV core protein via the PI3K/AKT pathway, which
might explain the association with a high grade of hepatic
inflammation in HCV-infected individuals. Clearance of HCV
core protein or modulation of IL-32 activity might be an
option to reduce inflammation in patients with chronic
hepatitis C.
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