211 research outputs found

    Abnormal surface morphology of the central sulcus in children with attention-deficit/hyperactivity disorder

    Get PDF
    The central sulcus (CS) divides the primary motor and somatosensory areas, and its three-dimensional (3D) anatomy reveals the structural changes of the sensorimotor regions. Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that is associated with sensorimotor and executive function deficits. However, it is largely unknown whether the morphology of the CS alters due to inappropriate development in the ADHD brain. Here, we employed the sulcus-based morphometry approach to investigate the 3D morphology of the CS in 42 children whose ages spanned from 8.8 to 13.5 years (21 with ADHD and 21 controls). After automatic labeling of each CS, we computed 7 regional shape metrics for each CS, including the global average length, average depth, maximum depth, average span, surface area, average cortical thickness and local sulcal profile. We found that the average depth and maximum depth of the left CS as well as the average cortical thickness of bilateral CS in the ADHD group were significantly larger than those in the healthy children. Moreover, significant between-group differences in the sulcal profile had been found in middle sections of the CSs bilaterally, and these changes were positively correlated with the hyperactivity-impulsivity scores in the children with ADHD. Altogether, our results provide evidence for the abnormity of the CS anatomical morphology in children with ADHD due to the structural changes in the motor cortex, which significantly contribute to the clinical symptomatology of the disorder

    A Bayesian Network-Based Framework for Personalization in Mobile Commerce Applications

    Get PDF
    Providing personalized services for mobile commerce (m-commerce) can improve user satisfaction and merchant profits, which are important to the success of m-commerce. This paper proposes a Bayesian network (BN)-based framework for personalization in m-commerce applications. The framework helps to identify the target mobile users and to deliver relevant information to them at the right time and in the right way. Under the framework, a personalization model is generated using a new method and the model is implemented in an m-commerce application for the food industry. The new method is based on function dependencies of a relational database and rough set operations. The framework can be applied to other industries such as movies, CDs, books, hotel booking, flight booking, and all manner of shopping settings

    Castration modulates singing patterns and electrophysiological properties of RA projection neurons in adult male zebra finches

    Get PDF
    Castration can change levels of plasma testosterone. Androgens such as testosterone play an important role in stabilizing birdsong. The robust nucleus of the arcopallium (RA) is an important premotor nucleus critical for singing. In this study, we investigated the effect of castration on singing patterns and electrophysiological properties of projection neurons (PNs) in the RA of adult male zebra finches. Adult male zebra finches were castrated and the changes in bird song assessed. We also recorded the electrophysiological changes from RA PNs using patch clamp recording. We found that the plasma levels of testosterone were significantly decreased, song syllable’s entropy was increased and the similarity of motif was decreased after castration. Spontaneous and evoked firing rates, membrane time constants, and membrane capacitance of RA PNs in the castration group were lower than those of the control and the sham groups. Afterhyperpolarization AHP time to peak of spontaneous action potential (AP) was prolonged after castration.These findings suggest that castration decreases song stereotypy and excitability of RA PNs in male zebra finches

    Whole exome sequencing and system biology analysis support the "two-hit" mechanism in the onset of Ameloblastoma

    Get PDF
    Ameloblastoma is the most frequent odontogenic tumor. Various evidence has highlighted the role of somatic mutations, including recurrent mutation BRAF V600E, in the tumorigenesis of Ameloblastoma, but the intact genetic pathology remains unknown. We sequenced the whole exome of both tumor tissue and healthy bone tissue from four mandibular ameloblastoma patients. The identified somatic mutations were integrated into Weighted Gene Co-expression Network Analysis on publicly available expression data of odontoblast, ameloblast, and Ameloblastoma. We identified a total of 70 rare and severe somatic mutations. We found BRAF V600E on all four patients, supporting previous discovery. HSAP4 was also hit by two missense mutations on two different patients. By applying Weighted Gene Co-expression Network Analysis on expression data of odontoblast, ameloblast, and Ameloblastoma, we found a proliferation-associated gene module that was significantly disrupted in tumor tissues. Each patient carried at least two rare, severe somatic mutations affecting genes within this module, including HSPA4, GNAS, CLTC, NES, and KMT2D. All these mutations had a ratio of variant-support reads lower than BRAF V600E, indicating that they occurred later than BRAF V600E. We suggest that a severe somatic mutation on the gene network of cell proliferation other than BRAF V600E, namely second hit, may contribute to the tumorigenesis of Ameloblastoma

    HybridPoint: Point Cloud Registration Based on Hybrid Point Sampling and Matching

    Full text link
    Patch-to-point matching has become a robust way of point cloud registration. However, previous patch-matching methods employ superpoints with poor localization precision as nodes, which may lead to ambiguous patch partitions. In this paper, we propose a HybridPoint-based network to find more robust and accurate correspondences. Firstly, we propose to use salient points with prominent local features as nodes to increase patch repeatability, and introduce some uniformly distributed points to complete the point cloud, thus constituting hybrid points. Hybrid points not only have better localization precision but also give a complete picture of the whole point cloud. Furthermore, based on the characteristic of hybrid points, we propose a dual-classes patch matching module, which leverages the matching results of salient points and filters the matching noise of non-salient points. Experiments show that our model achieves state-of-the-art performance on 3DMatch, 3DLoMatch, and KITTI odometry, especially with 93.0% Registration Recall on the 3DMatch dataset. Our code and models are available at https://github.com/liyih/HybridPoint.Comment: Accepted by IEEE International Conference on Multimedia and Expo (ICME), 202

    Dopamine modulates synaptic transmission in the premotor nuclei of songbirds

    Get PDF
    Songbirds, such as zebra finches, contribute to explore behaviors underlying neural activities. Birdsong is controlled by the song system. The robust nucleus of the arcopallium (RA) is a key nucleus for producing birdsong in the song system. The RA receives dopaminergic (DArgic) inputs from the midbrain, however, the function of these inputs involved excitatory synaptic transmission is still unclear. Excitatory synaptic transmission is critical in the signal integration activities of the brain. We examined the effects of dopamine (DA) on excitatory synaptic transmission of the projection neurons in the RA of adult male zebra finches, using whole-cell recording technique. We found that DA (100 μM) decreases the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs/mEPSCs). In our further study, these effects of DA were reversed by the D1-like dopamine receptor (D1R) antagonist and stimulated by a D1R agonist. However, a D2-like dopamine receptor (D2R) has no influence on the effects of DA. These results demonstrate that DA can inhibit excitatory synaptic transmission mainly via activation of D1R in adult male zebra finches. PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1563v1 | CC-BY 4.0 Open Access

    Mechanical overloading induces GPX4-regulated chondrocyte ferroptosis in osteoarthritis via Piezo1 channel facilitated calcium influx

    Get PDF
    Introductions: Excessive mechanical stress is closely associated with cell death in various conditions. Exposure of chondrocytes to excessive mechanical loading leads to a catabolic response as well as exaggerated cell death. Ferroptosis is a recently identified form of cell death during cell aging and degeneration. However, it's potential association with mechanical stress remains to be illustrated. Objectives: To identify whether excessive mechanical stress can cause ferroptosis. To explore the role of mechanical overloading in chondrocyte ferroptosis. Methods: Chondrocytes were collected from loading and unloading zones of cartilage in patients with osteoarthritis (OA), and the ferroptosis phenotype was analyzed through transmission electron microscope and microarray. Moreover, the relationship between ferroptosis and OA was analyzed by GPX4-conditional knockout (Col2a1-CreERT: GPX4flox/flox) mice OA model and chondrocytes cultured with high strain mechanical stress. Furthermore, the role of Piezo1 ion channel in chondrocyte ferroptosis and OA development was explored by using its inhibitor (GsMTx4) and agonist (Yoda1). Additionally, chondrocyte was cultured in calcium-free medium with mechanical stress, and ferroptosis phenotype was tested. Results: Human cartilage and mouse chondrocyte experiments revealed that mechanical overloading can induce GPX4-associated ferroptosis. Conditional knockout of GPX4 in cartilage aggravated experimental OA process, while additional treatment with ferroptosis suppressor protein (FSP-1) and coenzyme Q10 (CoQ10) abated OA development in GPX4-CKO mice. In mouse OA model and chondrocyte experiments, inhibition of Piezo1 channel activity increased GPX4 expression, attenuated ferroptosis phenotype and reduced the severity of osteoarthritis. Additionally, high strain mechanical stress induced ferroptosis damage in chondrocyte was largely abolished by blocking calcium influx through calcium-free medium. Conclusions: Our findings show that mechanical overloading induces ferroptosis through Piezo1 activation and subsequent calcium influx in chondrocytes, which might provide a potential target for OA treatment
    corecore