50 research outputs found

    Multiscale structural disorganization of indica rice starch under microwave treatment with high water contents

    Get PDF
    While the cooking of rice into porridge or similar foods is widely practiced, how microwave treatment, a rapid heating technology, changes the structure of rice starch with excess water remains largely unexplored. This work describes the multiscale structural changes of indica rice starch (IRS) with high water contents (70, 80, and 90 wt %, wet basis) subjected to microwave treatment for 1–3 min. Microwave treatment destructed crystalline lamellae, changed the crystalline type from A to B+V, and decreased crystallinity and double-helix content. While these changes depend on both water content and treatment time, the former had a stronger effect due to combined effects of water and heat for starch gelatinization. Interestingly, a highly porous material can be obtained simply upon microwave treatment of IRS for 3 min at a water content of 90 wt %. Thus, this work presents a simple method for creating such material promising for encapsulation and delivery applications

    Enhanced response of soil respiration to experimental warming upon thermokarst formation

    Get PDF
    As global temperatures continue to rise, a key uncertainty of terrestrial carbon (C)–climate feedback is the rate of C loss upon abrupt permafrost thaw. This type of thawing—termed thermokarst—may in turn accelerate or dampen the response of microbial degradation of soil organic matter and carbon dioxide (CO2) release to climate warming. However, such impacts have not yet been explored in experimental studies. Here, by experimentally warming three thermo-erosion gullies in an upland thermokarst site combined with incubating soils from five additional thermokarst-impacted sites on the Tibetan Plateau, we investigate how warming responses of soil CO2 release would change upon upland thermokarst formation. Our results show that warming-induced increase in soil CO2 release is ~5.5 times higher in thermokarst features than the adjacent non-thermokarst landforms. This larger warming response is associated with the lower substrate quality and higher abundance of microbial functional genes for recalcitrant C degradation in thermokarst-affected soils. Taken together, our study provides experimental evidence that warming-associated soil CO2 loss becomes stronger upon abrupt permafrost thaw, which could exacerbate the positive soil C–climate feedback in permafrost-affected regions

    Design and implementation of user task offloading algorithm

    No full text
    After the service provider temporarily selects the required edge nodes based on social and storage capabilities, application execution causes the edge nodes to cache part of the application data. Therefore, offloading part of the application computing tasks to the selected edge nodes can effectively improve application execution performance. However, in cases where the resources of user’s IoT devices are insufficient, tasks can be further offloaded to traditional edge servers or even to the cloud to maximize application execution efficiency. In this paper, the entire uninstall utility is modeled as a weighted sum of task completion time and energy consumption. Under the premise of considering users’ preferences for completion time and energy consumption, a game-based uninstallation algorithm is proposed. The algorithm performs uninstallation by optimizing the uninstallation decision. Based on user preferences, the total system overhead is relatively small. The subsequent simulation experiments show that the algorithm can reduce system overhead on the basis of satisfying user preferences and has relatively good adaptability

    Impact of ball-milling and ionic liquid pretreatments on pyrolysis kinetics and behaviors of crystalline cellulose

    No full text
    In this work, the kinetic mechanisms of pyrolysis of cellulose with different physical structures were illustrated. The crystalline cellulose showed better thermal stability and required higher energy for decomposition with more concentrated reactions due to the highly ordered structure. The crystallinity of the ball milling and ionic liquid pretreated cellulose decreased and the structure was relatively loose and disordered, thereby reducing the thermal stability, so the global activation energy of both samples decreased and the intensive reaction caused by the collapse of structure was alleviated. In fast pyrolysis, crystalline cellulose favored fast pyrolytic saccharification, and the highest levoglucosan yield reached 64.3 wt% at 400 degrees C. This research was helpful to deduce the influence of physical structure on the pyrolytic product distribution of cellulose, thereby providing useful information to promote the development of pyrolytic saccharification

    Research Progress on Signaling Pathway-Associated Oxidative Stress in Endothelial Cells

    No full text
    Studying the mechanisms of oxidative stress in endothelial cells is vital to the discovery of novel drugs for the treatment of cardiovascular disease. This article reviews the progress within the field of the role of oxidative responses in the physiology and growth of endothelial cells and emphasizes the effects of several main signal pathways involved in the oxidative stress of endothelial cells. Herein, we aim to provide scientific direction that can serve as a basis for researchers specializing in the signaling pathway of oxidative stress

    Data from: Tropical forest restoration: fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks

    No full text
    1. Due to intensifying human disturbance, over half of the world’s tropical forests are reforested or afforested secondary forests or plantations. Understanding the resilience of carbon (C) stocks in these forests, and estimating the extent to which they can provide equivalent carbon (C) sequestration and stabilization to the old growth forest they replace, is critical for the global C balance. 2. In this study, we combined estimates of biomass C stocks with a detailed assessment of soil C pools in bare land, Eucalyptus plantation, secondary forest, and natural old-growth forest after over 50 years of forest restoration in a degraded tropical region of South China. We used isotope studies, density fractionation and physical fractionation to determine the age and stability of soil C pools at different soil depths. 3. After 52 years, the secondary forests had equivalent biomass C stocks to natural forest, whereas soil C stocks were still much higher in natural forest (97.42 t ha-1) than in secondary forest (58.75 t ha-1) or Eucalyptus plantation (38.99 t ha-1) and lowest in bare land (19.9 t ha-1). Analysis of δ13C values revealed that most of the C in the soil surface horizons in the secondary forest was new C, with a limited increase of more recalcitrant old C, and limited accumulation of C in deeper soil horizons. However, occlusion of C in microaggregates in the surface soil layer was similar across forested sites, which suggests that there is great potential for additional soil C sequestration and stabilization in the secondary forest and Eucalyptus plantation. 4. Collectively, our results demonstrate that reforestation on degraded tropical land can restore biomass C and surface soil C stocks within a few decades, but much longer recovery times are needed to restore recalcitrant C pools and C stocks at depth. Repeated harvesting and disturbance in rotation plantations had a substantial negative impact on the recovery of soil C stocks. We suggest that current calculations of soil C in secondary tropical forests (e.g. IPCC Guidelines for National Greenhouse Gas Inventories) could overestimate soil C sequestration and stabilization levels in secondary forests and plantations

    Tim-3 expression in cervical cancer promotes tumor metastasis.

    Get PDF
    T cell immunoglobulin mucin-3 (Tim-3) has been identified as a negative regulator of anti-tumor immunity. Recent studies highlight the important role of Tim-3 in the CD8(+) T cell exhaustion that takes place in both human and animal cancer models. However, the nature of Tim-3 expression in the tumor cell and the mechanism by which it inhibits anti-tumor immunity are unclear. This present study aims to determine Tim-3 is expressed in cervical cancer cells and to evaluate the role of Tim-3 in cervical cancer progression.A total of 85 cervical tissue specimens including 43 human cervical cancer, 22 cervical intraepithelial neoplasia (CIN) and 20 chronic cervicitis were involved. Tim-3 expression in tumor cells was detected and was found to correlate with clinicopathological parameters. Meanwhile, expression of Tim-3 was assessed by RT-PCR, Western Blot and confocal microscopy in cervical cancer cell lines, HeLa and SiHa. The migration and invasion potential of Hela cells was evaluated after inhibiting Tim-3 expression by ADV-antisense Tim-3.We found that Tim-3 was expressed at a higher level in the clinical cervical cancer cells compared to the CIN and chronic cervicitis controls. We supported this finding by confirming the presence of Tim-3 mRNA and protein in the cervical cell lines. Tim-3 expression in tumor cells correlated with clinicopathological parameters. Patients with high expression of Tim-3 had a significant metastatic potential, advanced cancer grades and shorter overall survival than those with lower expression. Multivariate analysis showed that Tim-3 expression was an independent factor for predicting the prognosis of cervical cancer. Significantly, down-regulating the expression of Tim-3 protein inhibited migration and invasion of Hela cells. Our study suggests that the expression of Tim-3 in tumor cells may be an independent prognostic factor for patients with cervical cancer. Moreover, Tim-3 expression may promote metastatic potential in cervical cancers

    Polyethyleneimine Capped Silver Nanoclusters as Efficient Antibacterial Agents

    No full text
    Development of efficient antibacterial agents is critical for human health. In the present study, we investigated the antibacterial activity of polyethyleneimine (PEI)-capped silver nanoclusters (PEI-AgNCs), based on the fact that nanoclusters normally have higher surface-to-volume ratios than traditional nanomaterials and PEI itself has a strong antimicrobial capacity. We synthesized stable silver nanoclusters by altering PEI molecular weight from 0.6 kDa to 25 kDa and characterized them by UV-Vis absorption and fluorescence spectroscopy and high resolution transmission electron microscopy. The sizes of AgNCs were around 2 nm in diameter and were little influenced by the molecular weight of PEIs. The antibacterial abilities of the four PEI-AgNCs were explored on agar plate and in liquid systems. Our results revealed that the antibacterial activity of PEI-AgNCs is excellent and the reduction of PEI molecular weight could result in the increased antibacterial capacity of PEI-AgNCs. Such proposed new materials might be useful as efficient antibacterial agents in practical clinical applications
    corecore