8 research outputs found

    The electronic structure of intrinsic magnetic topological insulator MnBi2Te4 quantum wires

    Full text link
    The ferromagnetic and antiferromagnetic nanostructure are crucial for fundamental spintronics devices, motivated by its potential application in spintronics, we theoretically investigate the electronic structure of the ferromagnetic and antiferromagnetic phases of the cylindrical intrinsically magnetic topological insulator MnBi2Te4\mathrm{MnBi_{2}Te_{4}} quantum wires for both cases. We demonstrate that a few surface states exist between the bulk band gap in the ferromagnetic phase, with only one spin branch. In the antiferromagnetic phase, we show that three coexistent states exist between the energy gaps of the quantum wires

    Effect of potassium fertilization on storage root number, yield, and appearance quality of sweet potato (Ipomoea batatas L.)

    Get PDF
    Increasing storage root number is a pivotal approach to enhance both storage root (SR) yield and appearance quality of sweet potato. Here, 2-year field experiments were conducted to investigate the effect of 0 (K0), 120 (K1), 240 (K2), and 360 (K3) kg ha−1 potassium fertilizer (K2O) on lignin metabolism, root growth, storage root yield, and uniformity. The results demonstrated that potassium (K) application led to a decrease in the activities of key enzymes involved in lignin biosynthesis, including phenylalanine deaminase (PAL), 4-coumarate coenzyme A ligase (4-CL), cinnamic acid dehydrogenase (CAD), polyphenol oxidase (PPO), and peroxidase (POD). This resulted in a significant reduction in lignin and G-type lignin contents in potential SRs compared to K0 treatment within 10–30 days after planting (DAP). BJ553 exhibited a significant decrease in PAL activity, as well as lignin and G-type contents at 10 DAP, whereas YS25 showed delayed effects until 20 DAP. However, the number and distribution of secondary xylem conduits as well as the mid-column diameter area in roots were increased in K2 treatment. Interestingly, K2 treatment exhibited significantly larger potential SR diameter than other treatments at 15, 20, and 25 DAP. At harvest, K2 treatment increased the SR number, the single SR weight, and overall yield greatly compared with K0 treatment, with an average increase of 19.12%, 16.54%, and 16.92% respectively. The increase of SR number in BJ553 was higher than that of YS25. Furthermore, K2 treatment exhibited the lowest coefficient of variation for both SR length and diameter, indicating a higher yield of middle-sized SRs. In general, appropriate potassium application could effectively suppress lignin biosynthesis, leading to a reduction in the degree of pericycle lignification in potential SRs. This promotes an increase in the number of storage roots and ultimately enhances both yield and appearance quality of sweet potato. The effect of potassium fertilizer on lignin metabolism in BJ553 roots was earlier and resulted in a greater increase in the SR number compared to YS25

    Fumanjian, a Classic Chinese Herbal Formula, Can Ameliorate the Impairment of Spatial Learning and Memory through Apoptotic Signaling Pathway in the Hippocampus of Rats with Aβ1–40-Induced Alzheimer’s Disease

    No full text
    Alzheimer’s disease (AD) is the most common form of dementia and lacks disease-altering treatments. Fumanjian (FMJ), a famous classic Chinese herbal prescription for dementia, was first recorded in the Complete Works of Jingyue during the Ming Dynasty. This study aimed to investigate whether FMJ could prevent cognitive deficit and take neuroprotective effects in Aβ1–40-induced rat model through apoptotic signaling pathway. AD model was established by bilateral injection of Aβ1–40 into hippocampus in rat. All rats were tested for their capabilities of spatial navigation and memorization by Morris water maze. Apoptosis was tested using TUNEL staining in hippocampus neuronal cells; RT-PCR tested expression of Bcl-2 and Bax mRNA; western blotting tested protein level of cleaved caspase-3. After 14 days of treatment, FMJ significantly improved the escape latency and enhanced platform-cross number compared with the Aβ1–40-injected group (P<0.05 or P<0.01). FMJ also significantly decreased number of TUNEL-positive neuronal apoptosis and the expressions of Bax and cleaved Caspase-3 and increased the expression of Bcl-2 (P<0.01) compared with AD model group. In conclusion, FMJ exerts a protective effect against Aβ1–40-induced learning and memory deficits and neuronal apoptosis, suggesting that FMJ could be used as a potential therapeutic formula for AD

    DataSheet_1_Effect of potassium fertilization on storage root number, yield, and appearance quality of sweet potato (Ipomoea batatas L.).pdf

    No full text
    Increasing storage root number is a pivotal approach to enhance both storage root (SR) yield and appearance quality of sweet potato. Here, 2-year field experiments were conducted to investigate the effect of 0 (K0), 120 (K1), 240 (K2), and 360 (K3) kg ha−1 potassium fertilizer (K2O) on lignin metabolism, root growth, storage root yield, and uniformity. The results demonstrated that potassium (K) application led to a decrease in the activities of key enzymes involved in lignin biosynthesis, including phenylalanine deaminase (PAL), 4-coumarate coenzyme A ligase (4-CL), cinnamic acid dehydrogenase (CAD), polyphenol oxidase (PPO), and peroxidase (POD). This resulted in a significant reduction in lignin and G-type lignin contents in potential SRs compared to K0 treatment within 10–30 days after planting (DAP). BJ553 exhibited a significant decrease in PAL activity, as well as lignin and G-type contents at 10 DAP, whereas YS25 showed delayed effects until 20 DAP. However, the number and distribution of secondary xylem conduits as well as the mid-column diameter area in roots were increased in K2 treatment. Interestingly, K2 treatment exhibited significantly larger potential SR diameter than other treatments at 15, 20, and 25 DAP. At harvest, K2 treatment increased the SR number, the single SR weight, and overall yield greatly compared with K0 treatment, with an average increase of 19.12%, 16.54%, and 16.92% respectively. The increase of SR number in BJ553 was higher than that of YS25. Furthermore, K2 treatment exhibited the lowest coefficient of variation for both SR length and diameter, indicating a higher yield of middle-sized SRs. In general, appropriate potassium application could effectively suppress lignin biosynthesis, leading to a reduction in the degree of pericycle lignification in potential SRs. This promotes an increase in the number of storage roots and ultimately enhances both yield and appearance quality of sweet potato. The effect of potassium fertilizer on lignin metabolism in BJ553 roots was earlier and resulted in a greater increase in the SR number compared to YS25.</p

    Toxicity and bioremediation of pesticides in agricultural soil

    No full text
    corecore