14 research outputs found

    Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands

    Get PDF
    Pine wilt disease (PWD) is a very destructive forest disease that causes the mortality of pine. The infected trees usually die within three months, and the disease spreads fast with the long-horned beetle as the medium if the infected trees are not removed from the forest in time. Therefore, detecting the infected trees at different infection stage, especially the early infection, is crucial for preventing PWD spread. This study aims to exhibit the spectral differences of the pine needles between healthy pines and infected pines at different infection stages and reveal the diagnostic spectral bands for classifying the different infected stage trees. We collected needle samples from healthy, early-, middle-, late-stage infected trees in a Japanese pine (Pinus densiflora) forest and a Korean pine (Pinus koraiensis) forest in northern China to explore the spectral and biochemical properties differences of these four classes, and selected the sensitive bands combining competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA). The selected bands were used for the four infection stages classification by linear discriminant analysis (LDA) algorithm. The results show that Chlorophyll a, chlorophyll b, carotenoids, and moisture content decreases with the aggravation of infection. The green (510–530 nm), red-edge (680–760 nm), and short-wave infrared (1400–1420 nm and 1925–1965 nm) bands are the sensitive bands, and the overall accuracy is 77 % and 78 % for the Japanese pine and Korean pine respectively when using these bands for classifying healthy, early-, middle-, late-stage infected trees. The results demonstrate that physiological parameters including Chlorophyll a, chlorophyll b, carotenoids, and moisture content can be used as the diagnostic parameters of PWD, and the selected sensitive spectral bands are feasible for detecting the stress symptoms of the Japanese pine and Korean pine

    Exploring Common Hyperspectral Features of Early-Stage Pine Wilt Disease at Different Scales, for Different Pine Species, and at Different Regions

    Get PDF
    Pine wilt disease (PWD) is a devastating forest disease and has been listed as a quarantine pest in 52 countries around the world. Early identification of the affected trees and timely removal of them from the forest is crucial to control the spread. This study aims to explore the potential of hyperspectral data on early identification of PWD and exhibit the common spectral features, from early-infected tree crowns and needles, and from different species located in different regions. Two types of hyperspectral data were used and compared. One was using drone-based hyperspectral images with a spectral range of 400 – 1 000 nm and a resolution of 0.11 m. The images were analyzed at the individual-tree level. The other was using hyperspectral reflectance from sampled needles with a spectral range of 350 – 2 500 nm. It was used for the analysis at the needle level. We used linear discriminant analysis (LDA) to quantify the separability of spectral reflectance and first-derivative reflectance from the healthy and early-infected samples. The results showed that the red-edge bands were more sensitive than the other bands at both individual-tree and needle levels, and the first-derivative of red-edge bands achieved the best early recognition of the disease with 0.78, 0.72, and 0.85 accuracy at the individual-tree level for Chinese red pine and at the needle level for Japanese pine and Korean pine. We concluded that red-edge bands were the most informative bands with stable sensitivity at different scales and for different species

    Applicability of UAV-based optical imagery and classification algorithms for detecting pine wilt disease at different infection stages

    Get PDF
    As a quarantine disease with a rapid spread tendency in the context of climate change, accurate detection and location of pine wilt disease (PWD) at different infection stages is critical for maintaining forest health and being highly productivity. In recent years, unmanned aerial vehicle (UAV)-based optical remote-sensing images have provided new instruments for timely and accurate PWD monitoring. Numerous corresponding analysis algorithms have been proposed for UAV-based image classification, but their applicability of detecting different PWD infection stages has not yet been evaluated under a uniform conditions and criteria. This research aims to systematically assess the performance of multi-source images for detecting different PWD infection stages, analyze effective classification algorithms, and further analyze the validity of thermal images for early detection of PWD. In this study, PWD infection was divided into four stages: healthy, chlorosis, red and gray, and UAV-based hyperspectral (HSI), multispectral (MSI), and MSI with a thermal band (MSI&TIR) datasets were used as the data sources. Spectral analysis, support vector machine (SVM), random forest (RF), two- and three-dimensional convolutional network (2D- and 3D-CNN) algorithms were applied to these datasets to compare their classification abilities. The results were as follows: (I) The classification accuracy of the healthy, red, and gray stages using the MSI dataset was close to that obtained when using the MSI&TIR dataset with the same algorithms, whereas the HSI dataset displayed no obvious advantages. (II) The RF and 3D-CNN algorithms were the most accurate for all datasets (RF: overall accuracy = 94.26%, 3D-CNN: overall accuracy = 93.31%), while the spectral analysis method is also valid for the MSI&TIR dataset. (III) Thermal band displayed significant potential in detection of the chlorosis stage, and the MSI&TIR dataset displayed the best performance for detection of all infection stages. Considering this, we suggest that the MSI&TIR dataset can essentially satisfy PWD identification requirements at various stages, and the RF algorithm provides the best choice, especially in actual forest investigations. In addition, the performance of thermal imaging in the early monitoring of PWD is worthy of further investigation. These findings are expected to provide insight into future research and actual surveys regarding the selection of both remote sensing datasets and data analysis algorithms for detection requirements of different PWD infection stages to detect the disease earlier and prevent losses

    Applicability of UAV-based optical imagery and classification algorithms for detecting pine wilt disease at different infection stages

    No full text
    As a quarantine disease with a rapid spread tendency in the context of climate change, accurate detection and location of pine wilt disease (PWD) at different infection stages is critical for maintaining forest health and being highly productivity. In recent years, unmanned aerial vehicle (UAV)-based optical remote-sensing images have provided new instruments for timely and accurate PWD monitoring. Numerous corresponding analysis algorithms have been proposed for UAV-based image classification, but their applicability of detecting different PWD infection stages has not yet been evaluated under a uniform conditions and criteria. This research aims to systematically assess the performance of multi-source images for detecting different PWD infection stages, analyze effective classification algorithms, and further analyze the validity of thermal images for early detection of PWD. In this study, PWD infection was divided into four stages: healthy, chlorosis, red and gray, and UAV-based hyperspectral (HSI), multispectral (MSI), and MSI with a thermal band (MSI&TIR) datasets were used as the data sources. Spectral analysis, support vector machine (SVM), random forest (RF), two- and three-dimensional convolutional network (2D- and 3D-CNN) algorithms were applied to these datasets to compare their classification abilities. The results were as follows: (I) The classification accuracy of the healthy, red, and gray stages using the MSI dataset was close to that obtained when using the MSI&TIR dataset with the same algorithms, whereas the HSI dataset displayed no obvious advantages. (II) The RF and 3D-CNN algorithms were the most accurate for all datasets (RF: overall accuracy = 94.26%, 3D-CNN: overall accuracy = 93.31%), while the spectral analysis method is also valid for the MSI&TIR dataset. (III) Thermal band displayed significant potential in detection of the chlorosis stage, and the MSI&TIR dataset displayed the best performance for detection of all infection stages. Considering this, we suggest that the MSI&TIR dataset can essentially satisfy PWD identification requirements at various stages, and the RF algorithm provides the best choice, especially in actual forest investigations. In addition, the performance of thermal imaging in the early monitoring of PWD is worthy of further investigation. These findings are expected to provide insight into future research and actual surveys regarding the selection of both remote sensing datasets and data analysis algorithms for detection requirements of different PWD infection stages to detect the disease earlier and prevent losses

    Hypothetical structure of news schema.

    No full text
    ‘The Belt and Road Initiative’ (B&R) was proposed by Chinese President Xi Jinping in September and October 2013 and is now actively supported and participated by more than 100 countries and international organizations. B&R has become a hot topic all over the world since its inception. However, the environmental issues arising from this Initiative should not be underestimated. The concept of ‘A Community of Shared Future for Mankind’ is being promoted under the context of globalization, and there has been a lot of coverage in the mainstream media from various countries on the topic of environmental cooperation along B&R. This study takes a sample of reports on the ‘Belt and Road Environmental Cooperation’ from July 2021 to August 2022 and uses Van Dijk’s theory of news discourse analysis to analyze 20 articles in depth. This study attempts to explore the kind of thematic structure and lexical style that the mainstream newspapers from different countries use to report the environmental cooperation among the countries along B&R, also the implications of such a thematic structure and lexical style, and the characteristics of the discourse construction of mainstream newspapers in different countries. The research has found that B&R countries are used to holding a positive attitude to make a report and seek international cooperation. The headlines are mostly made up of nouns, and both direct and indirect quotations are used. Besides, to enhance the truth of the report, different number types are also involved; the theme structures are often made up of a two-level hierarchy.</div

    The theme structure of ‘Xi looks to greener growth across the globe’.

    No full text
    The theme structure of ‘Xi looks to greener growth across the globe’.</p

    The general news report schema of environment report from B&R countries.

    No full text
    The general news report schema of environment report from B&R countries.</p

    An overall diagram of the semantic macro-structure of the text.

    No full text
    An overall diagram of the semantic macro-structure of the text.</p
    corecore