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Applicability of UAV-based optical imagery and classification algorithms for 
detecting pine wilt disease at different infection stages
Ning Zhang a,b, Xiujuan Chaia,b, Niwen Lic,d, Jianhua Zhanga,b and Tan Suna,b

aAgricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China; bKey Laboratory of Agricultural Big Data, Ministry 
of Agriculture and Rural Affairs, Beijing, China; cPrecision Forestry Key Laboratory of Beijing, Forestry College, Beijing Forestry University, 
Beijing, China; dDepartment of Forest Resource Management, Swedish University of Agriculture Sciences, Umeå, Sweden

ABSTRACT
As a quarantine disease with a rapid spread tendency in the context of climate change, accurate 
detection and location of pine wilt disease (PWD) at different infection stages is critical for 
maintaining forest health and being highly productivity. In recent years, unmanned aerial vehicle 
(UAV)-based optical remote-sensing images have provided new instruments for timely and accu-
rate PWD monitoring. Numerous corresponding analysis algorithms have been proposed for UAV- 
based image classification, but their applicability of detecting different PWD infection stages has 
not yet been evaluated under a uniform conditions and criteria. This research aims to system-
atically assess the performance of multi-source images for detecting different PWD infection 
stages, analyze effective classification algorithms, and further analyze the validity of thermal 
images for early detection of PWD. In this study, PWD infection was divided into four stages: 
healthy, chlorosis, red and gray, and UAV-based hyperspectral (HSI), multispectral (MSI), and MSI 
with a thermal band (MSI&TIR) datasets were used as the data sources. Spectral analysis, support 
vector machine (SVM), random forest (RF), two- and three-dimensional convolutional network (2D- 
and 3D-CNN) algorithms were applied to these datasets to compare their classification abilities. 
The results were as follows: (I) The classification accuracy of the healthy, red, and gray stages using 
the MSI dataset was close to that obtained when using the MSI&TIR dataset with the same 
algorithms, whereas the HSI dataset displayed no obvious advantages. (II) The RF and 3D-CNN 
algorithms were the most accurate for all datasets (RF: overall accuracy = 94.26%, 3D-CNN: overall 
accuracy = 93.31%), while the spectral analysis method is also valid for the MSI&TIR dataset. (III) 
Thermal band displayed significant potential in detection of the chlorosis stage, and the MSI&TIR 
dataset displayed the best performance for detection of all infection stages. Considering this, we 
suggest that the MSI&TIR dataset can essentially satisfy PWD identification requirements at various 
stages, and the RF algorithm provides the best choice, especially in actual forest investigations. In 
addition, the performance of thermal imaging in the early monitoring of PWD is worthy of further 
investigation. These findings are expected to provide insight into future research and actual 
surveys regarding the selection of both remote sensing datasets and data analysis algorithms for 
detection requirements of different PWD infection stages to detect the disease earlier and prevent 
losses.
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1. Introduction

Pine wilt disease (PWD) is a devastating invasive dis-
ease that affects Pinus species and is caused by the 
pine wood nematode (PWN, Bursaphelenchus xylophi-
lus). PWN is a North American native that has spread 
rapidly around the world through cerambycid beetles 
of the genus Monochamus (Morimoto and Iwasaki  
1972; Escuer, Arias, and Bello 2004). Within its infec-
tious range, it endangers forests, plantations, and 
even ecosystems. The area, size, and extent of PWD 
damage is growing worse because of ongoing global 
climate change and extreme weather. According to 

relevant statistical reports in China, it has been 
reported in 18 provinces in China, with an infection 
area of 1.8 million hectares, and had already killed 
19.5 million trees by 2020 (Zhang et al. 2021; Sun 
et al. 2021). Nonetheless, as a major quarantine 
method, the prompt burning or felling of affected 
trees is the only way to control the disease (Zhang 
et al. 2021; Yu et al. 2021; Jackson et al. 1981). Thus, 
identifying and removing diseased trees from a site 
before the disease spreads to other (healthy) trees is 
the main priority in PWD management. The com-
monly used PWD damaged tree detection technique, 
on the other hand, has always focused on artificial 
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field research in actual forest management activity. It 
is frequently necessary to combine physical and che-
mical testing procedures, such as microscopic detec-
tion, polymerase chain reaction (PCR), and loop- 
mediated isothermal amplification (LAMP) methods 
to obtain a correct judgment (Wu et al. 2021). These 
methods require highly skilled grassroots workers 
(such as local forest station workers), professional 
tools, and individuals with professional backgrounds 
in pathology, entomology, and other related fields 
(Tang et al. 2021). More importantly, these methods 
are based on point sampling, which is not only unable 
to meet the real-time requirements of PWD field 
research but also lacks spatial integrity (Carnegie 
et al. 2018; Choi et al. 2017).

The development of optical remote sensing tech-
nology opens new avenues for forest damage diag-
nosis, detection, and location (Choi et al. 2017; Lee, 
Cho, and Lee 2007; Ju et al. 2014; Zhang et al. 2018). In 
recent decades, unmanned aerial vehicle (UAV) tech-
nology has been routinely used in PWD investigation 
to provide additional data support for natural 
resources monitoring (Iordache et al. 2020; Yu et al.  
2021). Kim et al. (2015) used a UAV to collect time- 
series hyperspectral images and successfully analyzed 
the PWD distribution characteristics. Huang et al. 
(2018) employed a fixed-wing UAV to monitor dead 
pine trees for PWD on an individual tree scale with an 
accuracy of over 80%. Previous studies have shown 
that UAVs are low in cost, easy to operate, and adap-
table, making them ideal in forest disease detection, 
particularly for PWD (the susceptible trees wilt and 
eventually die within 2–3 months after infected by 
Bursaphelenchus xylophilus). Compared to the use of 
satellite and ground remote sensing for forest disease 
investigation, UAV technology is less affected by 
atmospheric effects and can provide imaging data 
that are not limited by tree height or ground environ-
ment. Thus, we selected the UAV as the platform for 
this study.

From the data perspective, UAV-based visible 
images, multispectral images (MSI), and hyperspectral 
images (HSI) are currently used in forest disease inves-
tigations (Iordache et al. 2020; Wu et al. 2020). Xu et al. 
(2020) used UAV-based RGB images to achieve 
a PWD-infected pine tree detection with an overall 
accuracy of 82.42%, while under the same conditions, 
Huang (2020) and Kim et al. (2015) used MSI data and 
HSI data for infected trees detection, respectively. 

While many studies have shown the usefulness of 
spectral imaging techniques in identifying PWD- 
infected trees because of changes in water, pigmen-
tation, and even canopy structure in the host itself 
during this process (Kim et al. 2013, 2018; Zhang et al.  
2020), there is no clear description of how to select 
the optimal data for practical applications. For exam-
ple, Iordache et al. (2020) found that changes in the 
red and near-infrared spectral bands can better indi-
cate the progression of the PWD; however, this con-
clusion results from both the MSI and HSI datasets. 
Furthermore, despite changes in transpiration rate 
being the primary symptom of PWD, thermal images 
have been shown to be effective in identifying water 
changes in agriculture and other forest diseases 
(Golomb et al. 2015; Liu et al. 2021). However, to the 
authors’ knowledge, there are few effective hyper-
spectral or multispectral UAV-based sensors that 
cover the 1100–2500 nm for detecting PWD-infected 
pine tree and few studies have been conducted on 
thermal imaging. Thus, we will investigate the cap-
abilities of various UAV-based data sources in identi-
fying the various stages of PWD infection as well as 
the prospective applications of thermal imaging.

From the algorithm perspective, many UAV-based 
image classification algorithms have been developed 
in recent decades. Spectral analysis method is an ear-
lier algorithm used in disease and pest monitoring (Ju 
et al. 2014; Kim et al. 2013). In the scientific literature, 
some relevant sensitive bands, spectral/vegetation/ 
disease indices have been suggested and published. 
Machine learning algorithms, such as support vector 
machine (SVM), random forest (RF), and artificial 
neural network (ANN), which effectively combine 
spectral and spatial features, have been continuously 
developed, achieved satisfactory classification results, 
and successfully used for MSI and HSI datasets in PWD 
tree-damage classification. Takenaka et al. (2017) used 
the SVM algorithm to categorize the various stages of 
PWD-damaged degrees trees based on a combination 
of aerial laser scanning and high-resolution space- 
borne images, with a highest classification accuracy 
reaching of 98.5%. Yu et al. (2021) used the RF algo-
rithm to successfully estimate the stage of PWD infec-
tion in sampled trees. However, many studies have 
indicated that selecting the appropriate parameter 
combination, kernel function, and classification fea-
ture for these methods remains difficult (Zhang, 
Wang, and Zhang 2020; Romero, Gatta, and Camps- 
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Valls 2015; Liu 2017). In recent years, because deep 
learning in computer vision is currently booming, it 
has been possible to identify damaged trees in forests 
by using an intelligent analysis technique for remote 
sensing images. Qin et al. (2021) used UAV-based MSI 
to diagnose pine nematode diseases using the sug-
gested spatial-context-attention network (SCANet). 
The average overall accuracy was 79.33%, with 
a precision of 0.86 and a recall rate of 0.91. Wu et al. 
(2021) employed a faster region-based convolutional 
network (Faster R-CNN) and You Only Look Once ver-
sion 3 (YOLOv3) to diagnose the PWD-infected trees 
at an early stage. The AI detection score was 0.772. It 
is not difficult to find that similar to data source 
selection, it is also important to discuss the recogni-
tion abilities of various algorithms for different PWD 
infection-stages detection while using different data 
sources.

Therefore, this study primarily focused on asses-
sing the applicability of UAV-based optical imagery 
and classification algorithms for detecting PWD at 
different infection stages. And the usefulness of UAV- 
based thermal imaging was analyzed using mature 
image classification algorithms to fill the gap left by 
thermal imaging in PWD identification. The goals of 
this research were to answer three scientific questions 
in remote sensing-based PWD actual investigation: 1) 
which data source is the most appropriate for differ-
ent PWD infection-stage detection; 2) which data 

analysis method is the comparatively optimum choice 
of corresponding data source under different PWD 
infection stages; and 3) whether the thermal imaging 
system is capable of meeting the demands of PWD 
investigation, especially for the early detection of 
infection.

2. Study area and data

2.1. Study area

The study area was concentrated in two typical 
regions where the PWD occurred. The first one is 
Caomiaozi, which is located in the LinGang 
Economic and Technological Development Zone, 
Weihai City in Shandong Province, China (37°14′~37° 
20′N, 122°03′~122°10′E, Figure 1(a)-Site a). The second 
site is Xiangshan East Village, which is located in 
ChaoHu City in Anhui Province, China (31°16′~32°0′ 
N, 117°25′~117°57′E, Figure 1(a)-Site B).

Caomiaozi lies in a warm temperate semi-humid 
monsoon climate zone with an average annual air 
temperature of 12.7°C. The average annual relative 
humidity reached 68%. The average precipitation in 
this area is 158.6 mm in late spring (4 to 5 months) 
and early autumn (9 to 10 months), and average tem-
perature during this time is 20–25°C. This site is a pure 
Red pine (Pinus densiflora Sieb. et Zucc) forest with 
a canopy density of approximately 57% and scattered 

Figure 1. Location of the study areas. (a) represents the location of the study areas; (b) and (c) denote the true color composite images 
from 639 nm, 550 nm, and 470 nm of Site a and Site B used in this study; (d) and (e) are the live photo of the study area.
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understory vegetation (Figure 1d). The trees are 10– 
15 years old with an average height of approximately 
5.8 m. The average diameter at breast height (DBH) 
and average crown width are 10.98 cm and 2.1 m, 
respectively. Furthermore, this location has a low 
mountainous topography and is in a development 
zone with traffic and frequent trade. All of these 
climatic characteristics, host vegetation distribution, 
topography, and socio-economic factors are condu-
cive to the spread of PWD.

The Xiangshan East Village has a subtropical mon-
soon climate. The average annual temperature is 12– 
20°C, and the average rainfall is over 1000 mm. The 
area has a frost-free season that lasts more than 200  
days per year. This site contains Masson pine (Pinus 
massoniana Lamb.) and broad-leaved mixed forests. 
There are a few scattered broad-leaved deciduous 
trees in the region; however, the understory vegeta-
tion is relatively dense (Figure 1E). The trees are 15– 
17 years old. The dominant tree species in the survey 
area had an average DBH and crown width of 15 cm 
and 2.5 m, respectively. The canopy density was over 
70%. Similarly, this area has a high incidence of PWD.

2.2. Field data acquisition

The ground survey was conducted in Caomiaozi in 
September 2019 and in Xiangshan East Village in 
October 2019. Caomiaozi, identified as Site A, was 
chosen as the model training set, and Xiangshan 
East Village, identified as Site B, was chosen as the 
test site. At these two sites, trees with different 
degrees of PWN damage were observed.

We set up five 30 m × 30 m square sample plots at 
Site A. The coordinate data of the four corners of each 
sampling plot were recorded (the red dots in 
Figure 1(b)) using a handheld differential global posi-
tioning system (DGPS, Version S760, South Surveying 
& Mapping Technology Co., Ltd. Guangzhou, China). 
Red pine trees in each sampling plot were chosen for 
sampling. We validated the healthy and PWD infected 
trees using the Behrman funnel technique for mor-
phological identification first (Yu et al. 2021) and then 
used DGPS to locate their coordinates. There were 437 
healthy and 75 infected trees in these five sampling 
plots. Then, using the resin secretions and growth 
vigor of the trees, as well as the color of the needles 
(the tops and one-year branches were the main con-
siderations, and the general state of the sample tree 

was also taken into account), infected trees were 
classified into three infection levels, in combination 
with the classification criteria shown in Xu et al. 
(2011). These three levels of damage severity corre-
spond to the three phases of infection mentioned in 
Section 3.1. In total, 20 trees were in the chlorosis 
stage, 40 in the red stage, and 15 in the gray stage. 
These 75 infected sample trees were used as the 
investigated data to first offer visual references for 
drawing the regions of interest (ROIs) of different 
infection- stages trees and then validate the accuracy 
of the classification results. These 512 sample trees 
were not used for training the categorization models.

Due to the topographical conditions of the 
research site, we did not create sample plots inside 
Site B. Instead, 20 randomly discolored Masson pine 
trees were chosen to serve as the sample trees (con-
taining all the infection stages in this research, and 
recorded the position of each trees with DGPS, the red 
dots in Figure 1(c)). Totally, there were five trees in 
chlorosis stage, nine in red stage, and six in the gray 
stage.

2.3. UAV-based remote sensing images acquisition 
and pre-processing

A DJI Matrice 600 six-rotor UAV (DJI, Shenzhen, China) 
was used as the data acquisition platform and two 
UAV-based imaging systems were constructed to 
acquire ultra-high-resolution remote sensing data. 
The first was a UAV-based multispectral system 
mounted with a MicaSense Altum multispectral cam-
era (MicaSense, Seattle, WA, USA), which had five 
multispectral bands (blue, green, red, red-edge, and 
near-infrared) and an integrated long-wave thermal 
infrared band (Simpson et al. 2021). The second was 
a UAV-based hyperspectral imaging system equipped 
with a push-broom Nano-Hyperspec hyperspectral 
sensor at 400–1000 nm with 270 bands (Headwall 
Photonics, Boston, USA).

Considering the actual vegetation conditions and 
areas that needed to be covered, the flying height 
was set at 120 m, with 75% overlap set in the forward 
and lateral directions for multispectral images, and 
30% lateral overlap between hyperspectral scan 
lines. Each imaging equipment flew twice to cover 
Site A and once to Site B. Following this, rigorous pre- 
processing was performed, including image mosaic, 
reflectance correction, radiometric calibration, and 
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geometric corrections. To provide multispectral cali-
bration information before and during light changes, 
a calibration plate and separate Downward Light 
Sensor (DLS2, Micasense, Seattle, WA, USA) were 
used. A standard whiteboard and white tarp were 
placed on the ground within the flying area, and the 
ground spectrum was measured using an ASD Field 
Spec Pro Spectrometer (Analytical Spectral Devices, 
Boulder, CO, USA) for auxiliary radiometric correction. 
The Savitkzy-Golay smoothing method was used to 
reduce noise in the hyperspectral images. Finally, two 
hyperspectral orthophoto images with a spatial reso-
lution of 0.14 m were acquired, as well as two multi-
spectral orthophoto images with a spatial resolution 
of 0.053 m and two related thermal images with 
a spatial resolution of 0.062 m.

We resampled the multispectral images using 
a lower spatial resolution thermal imaging dataset. 
Then, green forestry was separated from the back-
ground (including rivers, bare land, roads, buildings, 
agricultural lands, shadows, and cars) using threshold 
segmentation. Table 1 lists the segmentation indices 
and thresholds for each dataset. In locations with 
extremely complex vegetation characteristics, manual 
outlining was partially employed to exclude unders-
tory vegetation (some parts of Site B).

3. Methods

In this study, we used the spectral analysis (building 
a simple spectral index by sensitive band selection 
and using threshold segmentation to classify different 
infection stages), RF, SVM, two- and three- 
dimensional convolutional network (2D- and 3D- 
CNN) classification algorithms to detect the different 
PWD infection stages on individual trees. All classifi-
cation algorithms were tested on three different data-
sets (hyperspectral image, HSI; multispectral image, 
MSI; and multispectral image with the thermal band, 
MSI&TIR). The classification performance of the ther-
mal band was analyzed by comparing the classifica-
tion accuracy of both MSI, MSI&TIR, and composited 

RGB with TIR band (RGB&TIR) data sets. Figure 2 
shows the primary workflow of the experiments.

3.1. PWD infection-stage categorization and data 
set construction

PWD infection was classified into four stages: (1) 
healthy stage; (2) chlorosis stage; (3) red Stage; and 
(4) gray stage according to the “Technical regula-
tion on quarantine for the pine wilt disease” 
(National standards of P.R.C, GB/T 23,476–2009) 
and previous studies (Yu, Ren, and Luo 2021; Xu 
et al. 2011). Using the GPS information to deter-
mine the location of each sample tree, the typical 
visual characteristics of each infected stage was 
summarized based on the visual representation of 
the trees at the corresponding location on the 
image. Figure 3 shows typical images and photos 
of pine trees at four different PWD infection stages 
and the associated evaluation standards.

Referring to the visual standards provided by the 95 
infected investigated trees (75 in Site A and 20 in Site B), 
the ROIs of trees at different infection stages were 
formed by manually drawing the tree crown canopy 
on each dataset. Finally, there were 266, 604, and 163 
trees in the chlorosis, red, and gray stages at Site A, and 
56, 104, and 62 trees at Site B, respectively. Because the 
infected trees were removed as part of the background 
during the threshold segmentation described in 
Section 2.3, different infection stage trees were plotted 
manually from the resampled images, and the ROIs of 
healthy trees were formed using green forestry imaging.

The manually drawn ROIs in Site A served as the 
training set, whereas the 75 diseased trees under 
investigation served as the validation set. Site B was 
used as the test set. Table 2 provides detailed informa-
tion on the three datasets as well as their construction 
criteria for different classification methods. Because 
there were many healthy trees in both Sites A and B, 
the ROIs of healthy trees were chosen at random, and 
the final number matched to the chlorosis stage.

Table 1. The segmentation indices and thresholds of each dataset.
Dataset Segmentation indices Thresholds

HSI NDVI 860; 640ð Þ ¼ R860 � R640ð Þ= R860 þ R640ð Þ −1≤NDVI(860,640)≤0.7
SimpleIndex ¼ R550 þ R766 � R679 0 � SimpleIndex � 0:2

MSI/MSI&TIR RVI ¼ Red=NIR min � RVI � 0:105*

*indicates the effective values of RVI are between the minimum value and 0.105.
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3.2. Different classification algorithms

3.2.1. Spectral analysis
The spectral vegetation index (SVI) is an effective and 
simple method for spectral data analysis and for 
detecting changes in plant physiology and chemistry 
(Zhang et al. 2020). In this study, we constructed three 
SVIs for the three datasets. This procedure consists of 
three steps: (I) acquiring the mean spectral informa-
tion, (II) selecting a sensitive wavelength, and (III) 
developing a spectral index. It should be noted that 
Step (II) is only applicable to the HSI dataset.

The mean spectral reflectance of each ROI at Site 
A was extracted, and each training set contained 
a total of 1299 spectral samples. For the HSI dataset, 
these 1299 spectral samples were utilized to select 

sensitive bands and than extracted the associated 
spectra of the sensitive bands to construct spectral 
index. For the MSI and MSI&TIR datasets, these 1299 
spectral samples were used directly for spectral index 
construction.

Successive projection algorithm (SPA) was used 
and implemented in Matlab R2016a to find wave-
lengths sensitive to PWD. SPA employs simple projec-
tion operations in a vector space to obtain subsets of 
wavelengths with minimal collinearity. The principle 
of variable selection is that the new variable selected 
is the one among all the remaining variables that has 
the maximum projection value on the orthogonal 
subspace of the previously selected variable. Root 
mean square error (RMSE) was used as the evaluation 

Figure 2. UAV-based remote-sensing data analysis processing framework for a comprehensive assessment of different PWD infection 
stages.
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criterion to determine the final optimal bands (Zhang 
et al. 2018).

To select the ideal band combination, we drew 
spectral curves of different stages for each dataset 
using the final sensitive bands in the HSI dataset and 
the mean spectral reflectance of the MSI and MSI&TIR 
datasets. The process of spectral index creation and 
classification threshold determination is comprises 
the following important components. (1) 
Examination of the changing trend of the spectral 
curve and locating bands with noticeable differences. 
(2) The normalization different spectral index (NDSI), 
ratio spectral index (RSI), difference spectral index 
(DSI), and other band combinations were calculated. 
(3) The sample scatter and index value of each spec-
tral index was plotted to determine whether they 

could successfully distinguish between different 
infection stages. (4) All possible combinations were 
exhaustively searched to find the optimal index (con-
taining the combination way and weights distribu-
tion). (5) Scatter plot of samples of different 
infection stages (X-axis) and index values (Y-axis) 
were generated to estimate the related thresholds 
for disease class separation. Corresponding to the 
three data sets of HSI, MSI, and MSI&TIR, three spectral 
indices were finally formed based on their classifica-
tion results.

3.2.2. Machine learning algorithms
Two typical machine learning classification algo-
rithms, SVM and RF classifiers, were used to classify 
the different infection stages in the three image 

Figure 3. Typical images of different PWD infection stages and corresponding categorized standards of each stage in this study.

Table 2. The detailed information of training, validation, and test sets for different classification algorithms.

Algorithms Training set construction criterion

Detailed information*

Stages
Training 

set
Validation 

set
Test 
set

2D-CNN 
& 3D-CNN

Taking each pixel as the center, constructing the space-spectral cube of 19 × 19 × 270 (for HSI) 
and 43 × 43 × 270 (for MSI and MSI&TIR) size as the sliding window size (for 3D-CNN) and 
setting 1 pixel as the sliding step size, all extracting space-spectral cube and the corresponding 
label as sample data of each dataset. The space-spectral cube size of 2D-CNN are 19 × 19 × 3 
(for HSI), 43 × 43 × 5 (for MSI) and 43 × 43 × 6 (for MSI&TIR).

Healthy 39582 21983 21072
Chlorosis 39582 21567 20055
Red 74156 40562 34101
Gray 31247 13795 15444

RF & SVM Tacking the center point of each ROI as the center, selecting all pixels points within 3 × 3 size and 
the corresponding label as sample data of each data set.

Healthy 2394 21983 21072
Chlorosis 2394 21567 20055
Red 5427 40562 34101
Gray 1476 13795 15444

Spectral 
Analysis

Extracting the mean spectral reflectance of each ROI and the corresponding label as sample data 
of the training data set, tacking the center point of each ROI and the corresponding label as 
sample data of the test data set.

Healthy 266 21983 21072
Chlorosis 266 21567 20055
Red 603 40562 34101
Gray 163 13795 15444

*The samples number of training sets for different algorithms has different sample size statistical basis. 2D-CNN and 3D-CNN are based on the space-spectral 
cube; RF and SVM are based on the pixel number; and spectral analysis is based on the canopy crown ROI number. The validation and test set were counted 
according to the actual surveyed pixels of diseased trees.
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datasets. These two machine learning algorithms 
were implemented in PyCharm by using Python 3.8.6.

As a non-parametric supervised machine learning 
algorithm, the key point of the SVM classifier for sol-
ving the class separation problem is to find the opti-
mal hyperplane (Wietecha et al. 2019). Gaussian radial 
basis (G-RBF) kernel was selected for SVM classifica-
tion, and two parameters – the penalty coefficient (C) 
and the kernel parameter (γ)—were determined using 
the grid search algorithm. The best classification para-
meters combination of C and γ was trained using Site 
A’s data. The RF classifier is also a robust and flexible 
non-parametric classification approach. It is friendly 
to high-dimensional, large data, and multi- 
classification tasks (Xu et al. 2012). The decision tree 
is a key point for the RF classifier. We also used the 
data from Site A to train the structure and determine 
the number of decision trees from {1000, 500, 
150, 100}.

3.2.3. Deep learning algorithms
The capacity of deep learning algorithms to automa-
tically learn complex characteristics assists in simplify-
ing the data interpretation classification process. In 
recent years, convolutional neural networks (CNN) 
have made unprecedented advances in the field of 
computer vision and can significantly improve the 
accuracy of classification jobs, particularly those invol-
ving hyperspectral data. Considering that this study 
used both HSI and MSI (MSI&TIR) images, we com-
pared both 2D- and 3D-CNN techniques.

2D-CNN can efficiently extract spatial information 
and share the weights, which significantly decreases 
the amount of information that the model can deliver. 
Eq. (1) describes a 2D convolution operation: 

vxy
ij ¼ f bij þ

X

m

XHi � 1

h¼0

XWi � 1

w¼0
khw

ijmV xþhð Þ yþwð Þ

i� 1ð Þm

� �

(1) 

where vxy
ij is the value at (x; yÞ in the j-th feature map 

in the i-th layer, bij is the offset and m is the index of all 
feature maps connected to the current layer in the 

i � 1ð Þ layer, khw
ijm represents the value of the convolu-

tion kernel at h;wð Þ (Zhang, Zhao, and Zhang 2020).
Ji et al. (2013) first proposed 3D-CNN to manage 

the challenge of extracting information from spatial 
and temporal dimensions, fostering significant pro-
gress in computer vision and other fields. The capacity 
to extract three-dimensional information 

concurrently using an end-to-end technique is ideal 
for hyperspectral image classification. Eq. (2) 
describes the 3D convolution operation: 

vxyz
ij ¼

tanh bij þ
X

m

XHi � 1

h¼0

XWi � 1

w¼0

XSi � 1

s¼0
khws

ijm V xþhð Þ yþwð Þ zþsð Þ

i� 1ð Þm

� �

(2) 

where tanh �ð Þis the hyperbolic tangent function, bij is 
the bias for the feature map, Si is the size of the 3D 

kernel along the spectral dimension, khws
ijm is the 

h;w; sð Þ value of the kernel connected to the m-th 
feature map in the previous layer (Ji et al. 2013).

In terms of image classification, 3D convolution 
encompasses both spatial and spectral convolution 
operations. We used a pixel-level-based 3D-CNN clas-
sification model established by Zhang, Zhao, and 
Zhang (2020) to evaluate the specific circumstance 
of PWD damage (the infected trees are rather spread).

In this study, the tree canopy of most field investi-
gation trees was less than 3 m, thus, each patch was 
set to 19 × 19 for HSI and 43 × 43 for MSI and MSI&TIR 
datasets. For 2D-CNN, three principal components 
were generated from the 270 bands of the original 
data using the PCA method for HSI dataset, and 19 ×  
19 × 3 data were extracted as original features. And 
for the MSI and MSI&TIR datasets, the original features 
were 43 × 43 × 5 and 43 × 43 × 6, respectively. The 
network included three convolutional layers and two 
pooling layers (Figure 4(a)). The size of the convolu-
tion kernel was 5 × 5, and the numbers of convolution 
kernels per layer was 32, 64, and 128.

For 3D-CNN, the model added the Dropout to the 
last 3D convolution and the first fully connected layers. 
It sets the output of the neurons to 0 according to a set 
probability of 0.5. The batch size and the number of 
epochs were set to 64, and 300, respectively. The train-
ing process was completed using an SGD optimizer. 
A Rectified linear unit (ReLU) was used as the activation 
function. The Grid search method was used to select 
a number from {0.01, 0.03, 0.001, 0.003, 0.0001, 0.0003} 
as the learning rate to train the model for 300 epochs. 
Based on the changes in accuracy and loss during 
training and the classification results, the optimal learn-
ing rate was set as 0.001. For the MSI and MSI&TIR 
image datasets, the deep learning classification net-
work contained two 3D convolutional layers with 
a fixed kernel 3 × 3 × 3. Tensorflow and Keras, two 
open source deep learning frameworks, were used to 
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construct the input dataset and implement deep learn-
ing approaches, respectively. The operating platform 
hardware configuration included an Intel (R) Core (TM) 
i7–7700 CPU @ 3.60 GHz, 32GB memory, and NVIDIA 
TITAN Xp COLLECTORS EDITION GPU.

3.3. PWD infection-stage classification by thermal 
band

Two simple tests were designed to investigate the 
PWD infection-stage classification performance of 
the thermal band. On the one hand, thermal band 
was used as a new dataset to classify the infection 
stages using threshold segmentation. On the other 
hand, we extracted blue, green, and red bands from 
the original MSI data set to create new RGB composite 
images, which were then combined with the thermal 
band as a new RGB&TIR dataset. RGB&TIR dateset was 
then used to classify different PWD infection stages 
using the relevant optimal classification algorithm 
(the algorithm that had the best classification perfor-
mance for different PWD infection-stage detection 

using the MSI&TIR dataset). The MSI and MSI&TIR 
datasets were used to compare all categorization 
results from these two experiments.

3.4. The comparison of PWD-infected Trees 
Detection and Spatial Resolution Response

Two comparison tests were designed to verify the 
reliability of the correlation analysis results. We 
selected the dataset with a relatively good classifica-
tion effect as the standard dataset and chose the 
classification method that had the best classification 
effect corresponding to the selected standard data set 
as the standard classification method. These two com-
parative experiments are as follows:

(I) Detection of PWD-infected trees. The “PWD- 
infected tree” was created by combining all 
three stages of infection (chlorosis, red, and 
gray) into one type. The background was 
described for all other ground types and 
healthy trees. In other words, the classification 

Figure 4. Architecture of the 2D- and 3D-CNN models for HSI dataset. (A) is the architecture of 2D-CNN and (B) is for 3D-CNN.
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process was reduced to a simple binary classi-
fication problem. This is because in the actual 
PWN prevention and control policy, once 
a PWD infected tree is discovered, it is cut 
down regardless of the degree of infection.

(II) PWD infection-stage classification using images 
with different spatial resolution. Based on the 
regularly used spatial resolution of satellite 
remote sensing images, the standard images 
were resampled into 0.3 m (equivalent to world-
view-3), 0.8 m (corresponding to Gaofen-2), and 
1.5 m (corresponding to SPOT6) spatial resolution. 
Resampled images with different spatial resolu-
tions were classified using the standard classifica-
tion method.

3.5. Accuracy assessment

To evaluate the reliability of the corresponding datasets 
and algorithms statistically, the confusion matrix, overall 
accuracy (OA), and kappa coefficient (Kappa) were cal-
culated. The infection-stage information from the field 
survey, containing both the GPS and infection stages 
was used to stacking with each classification map to 
show a more intuitive effect. In addition, the time and 
economic cost, principle, and computational complexity 
were within the scope of the comprehensive evaluation 
indices.

4. Results

4.1. Sensitive band selection and spectral indices 
construction

The SPA was used to select sensitive bands of the HSI 
dataset. The results are shown in Figure 5. As the 
number of selected optimal bands increases, the 

RMSE shows a significant drop when the number of 
variables included in the model is four. Considering 
the selected band number and analysis accuracy, the 
final number of selected bands was four, with an 
RMSE of 0.42. The final selected sensitive bands were 
413 nm, 691 nm, 720 nm, and 911 nm.

According to the spectral index construction steps 
described in Section 3.2, the NDSI, DSI, RSI and other 
band combinations were calculated, their scatterplots 
were drawn based on the sensitive band selection 
results (HSI dataset). The sample band combination 
scatterplot of the HSI dataset is shown in Figures 6(a, 
b). Figure 6(a) shows that NDSI 691; 720ð Þwas success-
ful in separating trees in the healthy stage, however, 
trees in the other three infection stages, particularly 
the red and gray stages, could not be separated. The 
simple index 0:5� R911 � 3� R413 was useful for 
identifying healthy and gray stage trees 
(Figure 6(b)). It is worth noting that these two simple 
indices are somewhat, but not significantly, effective 
in distinguishing between chlorosis and red stages. 
The PWD infection-stage classification index for the 
HSI dataset (PHSI) was therefore constructed to widen 
the gap between the chlorosis and red stages, while 
also ensuring that the two simple indices already 
differentiated between the healthy and gray stages. 
Based on carefully searching for all possible combina-
tions and comparing their scatterplots, the final PHSI 
developed here is shown in Eq.(3) The scatterplot 
(Figure 6(e)) indicates that the healthy, chlorosis, red, 
and gray stages had thresholds of 1.0, 0.5, and 0, 
respectively.

PHSI ¼ 5:5� R911 � 33� R413 þ NDSI 691; 720ð Þ (3) 

Similarly, Figures 6(c,d) show the two simple 
indices generated by the scatterplot analysis of the 
MSI dataset. NDSI 668; 717ð Þ can effectively 

Figure 5. SPA bands selection result. (a) Variation in RMSE as the number of selected bands increase. (b) Final optimal selected bands.
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distinguish between healthy, chlorosis, and the other 
two infection-stage trees, while 0:7� R840 � 3� R475 

can better distinguish the gray stage trees. Like PHSI 
construction, the final PWD infection-stage classifica-
tion index (PMSI) is shown in Eq. (4) The thresholds 

corresponding to the healthy, chlorosis, red, and gray 
stages, as determined by the scatterplot (Figure 6(f)), 
were 2.0, 1.1, and 0.65, respectively. For the MSI&TIR, 
the final PWD infection-stage classification index 
(PTSI) is shown in Eq. (5), and the thresholds were 

Figure 6. Scatterplot of different simple indices and the classification performance and thresholds of three construction spectral 
indices. (a) and (b) are the simple indices for the HSI dataset; (c) and (d) are the simple indices for the MSI dataset; (d), (e) and (f) are the 
classification performance of each spectral indices for HSI, MSI and MSI&Tir dataset. The different color dots are the spectral index 
values of four corresponding infection stages.
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−1.5, −2.65, and −3.3, respectively. Figure 6(g) shows 
its scatterplot. 

PMSI ¼ 8:4� R840 � 36� R475 þ NDSI 668; 717ð Þ (4) 

PTSI ¼ 8:4� R840 � 36� R475 þ NDSI 668; 717ð Þ � 0:1
� R11000

(5) 

4.2. Classification results of different image sets 
with different methods

Table 3 shows the final classification parameter com-
binations as well as the classification accuracy of the 
validation set under the different classification algo-
rithms and datasets. It is clear that the HSI and 
MSI&TIR data sets can achieve higher classification 
accuracy using RF as well as the two deep learning 
algorithms. The results of the spectral analysis were 
the lowest. Under this condition, we used the same 
model for PWD classification on the test set, and care-
fully analyzed the categorization outcomes of the test 
set to confirm this finding.

4.2.1. Classification accuracy assessment
The classification confusion matrices for different clas-
sification algorithms using different test datasets are 
shown in Figure 7. It can be observed that the healthy 
and gray stages are accurately characterized regard-
less of the algorithm used for any given data set. With 
the MSI&TIR dataset, the classification accuracy of 
healthy stage trees by SVM and RF classification meth-
ods achieved 100%.

The classification accuracy of the same dataset 
using different classification algorithms varies signifi-
cantly in the longitudinal view of Figure 7. For the HSI 
dataset, PHSI displayed the lowest classification accu-
racy. The chlorosis stage was misclassified as healthy 
stages, the healthy and red stages were misclassified 
as chlorosis stage, with misclassification rates of 
16.85%, 17.39% and 52.16%, respectively. This is 
essentially the same as the classification performance 
of the PHSI shown in Figure 6E. SVM and 2D-CNN 
techniques perform almost identically, with red and 
gray stage classification accuracies exceeding 94%. 
Regardless of the stage, the machine learning and 
deep learning algorithms produced better classifica-
tion results, especially the RF and 3D-CNN algorithms, 
which achieved greater than 70% classification 

accuracy. For the MSI dataset, the RF and 3D-CNN 
classification algorithms also have the highest classi-
fication accuracy, whereas the spectral analysis 
method of PMSI has the lowest classification accuracy. 
Misclassification continues to be most common in the 
chlorosis and red stages. Regardless of the algorithm 
used, the chlorosis stage had the lowest classification 
accuracy. When compared to that of the other two 
datasets, the correct classification accuracy rate of the 
chlorosis stage based on the MSI&TIR dataset was 
significantly higher, with even the lowest classifica-
tion technique, PTSI, achieving 79.47%. The best clas-
sification results were obtained using the RF and 3D- 
CNN algorithms, and the SVM and 2D-CNN results for 
the MSI&TIR data set were excellent.

In terms of the horizontal axis of Figure 7, while the 
chlorosis stage classification accuracy of the HSI and 
MSI datasets is not perfect, the RF and 3D-CNN pro-
duce the best classification results for each infection 
stage. The categorization results of the HSI and 
MSI&TIR datasets were much better than those of 
the MSI dataset. The correct classification rates of 
chlorosis and red stages, in particular, exceeded 92% 
using the MSI&TIR dataset. When using the HSI and 
MSI datasets, the misclassification rates of chlorosis 
and red stages under the spectral analysis method 
were extremely high, but they improved significantly 
when using the MSI&TIR dataset. Similarly, while the 
SVM and 2D-CNN algorithms have low classification 
accuracy, the MSI&TIR dataset produced the best 
results. Overall, regardless of the classification algo-
rithm used, the MSI&TIR dataset produced the best 
categorization results. Although HSI has high classifi-
cation accuracy, the misclassification of the chlorosis 
and red stages should not be ignored.

Table 4 shows the OA and Kappa of the different 
classification algorithms for the different test sets. The 
MSI dataset had the lowest classification accuracy of 
all tested algorithms. Even the best RF achieved an OA 
of only 84.79%, a difference of less than 3% than that 
of the worst spectral analysis classification in MSI&TIR. 
For the MSI&TIR dataset, even when using the PTSI 
classification method, the OA and Kappa attained 
over 81% and 0.74, respectively, which were much 
better than the other datasets. In other words, the 
RF and 3D-CNN algorithms performed consistently 
and effectively across three different datasets, with 
OA of more than 81%, even on the MSI dataset. In 
contrast, the spectral analysis method was less stable, 
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with a major difference in accuracy across the three 
datasets. Comparing Tables 3 and 4, despite the fact 
that the OA and Kappa acquired from Site B were 
generally lower than those obtained from Site A, 
MSI&TIR had the best classification accuracy under 
RF and 3D-CNN algorithms, regardless of area, 
whereas the spectral analysis method had the most 

unstable classification technique and the lowest clas-
sification accuracy for the MSI dataset.

In addition, we performed a two-way analysis of 
variance (ANOVA) on the OA of the classification of 
the four models on both the validation and test sets 
to further illustrate the variability between the mod-
els. The results are shown in Table 5. Comparing the 

Figure 7. The classification confusion matrices (percent) of different algorithms with different datasets. The horizontal axis is the 
ground truth and the vertical axis is the classification result.
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three F-statistics and the corresponding F-critical 
values, we found that the F-statistics of the dataset 
were all greater than the F-critical values, indicating 
that the data and the algorithm have significant 
effects on classification accuracy. Furthermore, all 
three P-values in the results are less than 0.05, indicat-
ing that the data, algorithm, and their interaction 
have a significant effect on classification accuracy.

4.2.2. Classification mapping
Figure 8 depicts the distribution of different PWD 
infection stages using different algorithms for each 
dateset. It can be observed that the classification 
result of PHSI is the worst, with essentially no classifi-
cation of the chlorosis stage accomplished. In addi-
tion, the HSI dataset has such significant clustering 
that it cannot be properly differentiated from the 
individual tree scale. In contrast, the tree distribution 
of the MSI and MSI&TIR datasets seems to be more 
realistic. It is worth noting that the classification 
results of tree crowns in red and gray stages are 
more prominent and clustered in the MSI and 
MSI&TIR datasets. The chlorosis stage classification 
results show the “Pepper and Salt” phenomena, 
which is particularly noticeable in places with large 
areas of bare land and low canopy density. In parti-
cular, the chlorosis stage is successfully represented 
when the MSI&TIR dataset is combined with the RF 
algorithm, which has an exceptionally good classifica-
tion performance. According to the classification 

results in Figures 7 and 8, the MSI&TIR dataset had 
the best results under the RF and 3D-CNN algorithms.

To comprehensively analyze the accuracy of the clas-
sification results, tree crowns in different infection stages 
were labeled, and the field observations were overlaid 
with the map obtained from RF classification using the 
MSI&TIR dataset. The results are shown in Figure 9. By 
comparing the locations of the investigated trees and 
the infection stages, we found that the gray stage classi-
fication was 100% correct, with the largest misclassifica-
tion occurring in the chlorosis stages. This is consistent 
with the previous quantitative analysis results (Figure 7 
and Table 4).

4.3. Classification results of using thermal images

Table 6 shows the test results using thermal images to 
classify the PWD infection stages. As can be observed, 
first, the classification accuracy of single thermal images 
was the worst and was inadequate to meet investigation 
requirements. However, the chlorosis stage classification 
accuracy was not significantly lower than that of the 
other stages, as with the other data sources. Second, 
while the composited RGB dataset had lower classifica-
tion accuracy in the chlorosis and red stages, the 
RGB&TIR dataset was significantly better at identifying 
trees in the healthy, chlorosis, and gray stages, especially 
in the chlorosis stage. The classification accuracy 
exceeded the recognition accuracy under the MSI data-
set. Third, an overall comparison of the results of the 

Table 4. The overall accuracy and kappa coefficient of test set under different 
classification algorithms for different datasets.

Algorithms HSI MSI MSI&TIR

Spectral Analysis OA/% 63.10 81.22 81.60
Kappa 0.48 0.74 0.75

SVM OA/% 84.90 81.54 92.32
Kappa 0.79 0.75 0.90

RF OA/% 87.60 84.79 94.26
Kappa 0.83 0.79 0.92

2D-CNN OA/% 85.27 81.33 90.48
Kappa 0.79 0.75 0.87

3D-CNN OA/% 87.46 81.39 93.30
Kappa 0.83 0.74 0.90

Table 5. The two-way ANOVA results.
Source SS df MS F P-value F crit

Methods 605.26 4 151.32 12.82 <0.001 3.06
Data sets 358.82 2 179.41 15.20 <0.001 3.68
Interaction 292.32 8 36.54 3.10 0.03 2.64
Internal 177.05 15 11.80
Total 1433.46 29
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datasets with TIR band (RGB&TIR and MSI&TIR) and with-
out the TIR band (RGB and MSI) shows that increasing 
the TIR band was highly significant in improving chloro-
sis stage detection. These findings confirm the effective-
ness of thermal imaging for detecting the chlorosis 
stage.

Furthermore, the MSI-based dataset had a much 
higher classification accuracy than the RGB-based data-
sets. This provides additional evidence for the utility of 
red-edge and NIR bands in forest disease identification.

4.4. PWD-infected trees detection and spatial 
resolution response

Because the combination of the MSI&TIR and RF classi-
fication algorithms had the highest accuracy in detect-
ing different PWD infection stages (OA = 94.26% and 
Kappa = 0.92), the MSI&TIR dataset was used as the 
standard data source and the RF classifier as the stan-
dard classification algorithm. The number of simple 
decision trees was set to 100 for consistency.

Figure 8. The classification results of different algorithms using different datasets.
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(I) PWD infected individual tree detection results. 
Figure 10 shows the resulting map. It can be seen that 
infected trees are well detected using the MSI&TIR 
dataset with the RF classification algorithm, and that 
the results are highly consistent with the survey 
results (only one tree was not detected). The OA and 
Kappa were 95.83% and 0.89, respectively.

(II) Results of PWD infection-stage classification 
using different spatial resolution images. Table 7 

shows the results of the PWD infection-stage classifi-
cation using images with different spatial resolution. 
Previous results of the MSI&TIR dataset with a 0.062 m 
spatial resolution were used as the reference. It can be 
seen that when spatial resolution lowers, the classifi-
cation accuracy decreases to a certain extent. Once 
the spatial resolution was less than 1.0 m, the classifi-
cation accuracy of almost each different infection- 
stage was less than 75%.

Figure 9. Comparison mapping with investigation results. Circles and crosses indicate the remote sensing classification results and 
investigation results, respectively.

Table 6. Comparisons of classification accuracy among different data sources.
Evaluating Indicators TIR Composited RGB RGB&TIR MSI MSI&TRI

Healthy stage (%) 68.17 90.32 90.62 87.27 100.00
Chlorosis Stage (%) 45.78 56.98 71.83 69.27 92.73
Red Stage (%) 49.72 65.86 83.45 99.23 91.97
Gray Stage (%) 52.12 84.12 89.33 95.05 97.38
OA (%) 53.22 72.54 81.64 84.79 94.26
Kappa 0.50 0.70 0.74 0.79 0.92

Figure 10. Classification results and infected tree crown delineation maps based on the MSI&Tir dataset.
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5. Discussion

5.1. THe feasibility of detecting trees affected by 
the PWN using UAV-based remote sensing

In this study, the UAV platform was equipped with 
both multispectral and hyperspectral sensors and 
flew at an altitude of 120 m to acquire data sources. 
The spatial resolution of HSI, MSI and thermal band 
was 0.14 m, 0.053 m, and 0.062 m, respectively. On the 
one hand, most of the classification results exceeded 
80% in terms of the overall classification accuracy of 
different classification algorithms under different 
datasets (Tables 3 and 4), and it is clear from 
Figure 10 that the positioning information of 
a individual infected tree is accurate. On the other 
hand, the crown size of pine trees in this study was 
approximately 3 m or less, and the regions were both 
medium-density forested, necessitating the use of 
a UAV platform. Furthermore, the results of the com-
parative experiments (I) and (II) highlight the need to 
obtain high spatial resolution images for detect-
ing PWD.

These results are consistent with the Joint Research 
Center technical report titled “The feasibility of 
detecting trees affected by the Pine Wood 
Nematode using remote sensing” in 2015, which 
pointed out that “the prevalence of pine trees with 
projected crown diameters of 2 m or less and this 
phenomenon dictates the necessity of very high- 
resolution imagery for tree-level forest monitoring in 
the PWN threat.” Although the actual implementation 
of UAVs for forest management and investigation still 
needs to consider a number of challenges, such as 
endurance, position signals, and the personnel, the 
applicability of UAV-based remote sensing in both 
spectral, spatial, and temporal resolution aspects can-
not be ignored for PWD infection-stage detection. 
Thus, according to the analysis presented above, 
using UAVs to identify PWD is technically possible 
and has been enacted in forest surveys; however, it 
serves as a supplemental method. It is anticipated 

that this will strengthen their position in future prac-
tical applications through hardware and service 
staffing.

5.2. The performance of different optical imaging 
in different PWD infection- stage detection

According to the analysis of the physiological change 
process of the host pine tree, after PWN infects the 
host vegetation, it will gradually lead to the obstruc-
tion of water transport, followed by a drop in tran-
spiration rate and further water loss until needles wilt, 
and can result in plant death. When water stress 
exceeds a specific threshold, the lamellar structure 
of chloroplasts in needles is damaged, and the chlor-
ophyll content decreases. However, at the beginning 
of stress, carotenoids perform a defensive role, and 
then trigger the plants’ own defense mechanism. 
Canopy water temporarily increases at this time (Xu, 
Luo, and Zhang 2012). Thus, theoretically, the spectral 
continuity of HSI data can make it easier to detect, 
monitor, and identify subtle changes in the target 
vegetation. However, as shown in Figure 7, the classi-
fication accuracy of the HSI dataset is significantly 
lower than that of the MSI&TIR data set regardless of 
the method used, and the number of correct classifi-
cations for each infection stage is also not particularly 
high. In face, as the number of bands in hyperspectral 
images increase, the amount of data noise also 
increase. Moreover, despite the high spatial resolution 
of UAV images, the presence of mixed pixels in com-
plex landscapes is still significant. This not only 
increases the amount of data stored and transmitted 
but also has a significant impact on analysis accuracy. 
More importantly, when the number of training sam-
ples is insufficient, a more serious Hughes phenom-
enon exists in the classification of hyperspectral 
images. Additionally, we must consider the cost of 
the hyperspectral sensor as well as the time required 
for data analysis.

Table 7. Comparisons of classification accuracy among different spatial resolution datasets.
Evaluating Indicators Original 0.053 m Resampled 0.3m Resampled 0.8m Resampled 1.5m

Healthy stage (%) 100 95.12 89.32 80.32
Chlorosis Stage (%) 92.73 90.21 74.78 59.33
Red Stage (%) 91.97 90.89 84.93 72.18
Gray Stage (%) 97.38 97.22 86.64 74.54
OA (%) 94.26 92.83 86.98 69.93
Kappa 0.92 0.90 0.86 0.65
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Throughout the study, the classification results 
of the MSI&TIR dataset were the most prominent. 
The number of correct classifications for all stages 
was extremely high. And, as demonstrated in 
Table 6, the thermal band has a significant perfor-
mance for detecting chlorosis stage trees based on 
the classification accuracy of both the TIR and 
RGB&TIR datasets. Similarly, according to an analy-
sis of physiological changes in host vegetation, 
because of the sharp decrease in water content 
in the early stage, both the transpiration rate and 
stomatal conductance decreased to a certain 
extent, scattered needles withered, and the canopy 
temperature changed. Corresponding to the three 
infection stages and classification accuracy, the 
MSI&TIR dataset is the most advantageous for 
early PWD infection-stage detection. Then, as the 
chlorophyll content decreased and the needles’ 
color changed from green to red and brown (scat-
ter yellow), all three datasets could efficiently 
recognize trees in the red infection stage, and 
classification accuracy achieved 90%.

To summarize, the scalability of HSI is not 
strong, regardless of the quantitative analysis accu-
racy. the cost, time-consuming and operability. In 
terms of quantitative classification accuracy, the 
MSI&TIR dataset are the best choice for detecting 
each infection stage. Although it only adds one 
thermal infrared band to MSI, the chlorosis stage 
classification accuracy improves by nearly 22% 
(PMSI and PTSI). This increase is critical in prevent-
ing the spread of PWD during the chlorosis stage. 
And even without taking the infection stages into 
account, MSI&TIR still has excellent classification 
accuracy. However, when considering both the 
portability of data acquisition and the ease of 
data processing, temperature calibration of the 
thermal band remains a challenge. Currently, no 
single method for providing an easy calibration 
similar to the calibration plate and separate 
Downward Light Sensor for thermal imaging. In 
this case, an MSI data source with red-edge and 
NIR bands is also a good choice. Thus, dependent 
on different practical requirements and by compar-
ing the results of Tables 4 and 7, we believe that 
MSI&TIR data are superior for early PWD identifica-
tion, while the simpler MSI dataset is more suitable 
for mid- to late-stage PWD infection detection in 
trees.

5.3. Different detection methods for different needs

The analysis of spectral changes with the physiologi-
cal change process of the host pine tree revealed that 
particular spectral information was strongly related to 
each infection stage. In most cases, spectral analysis is 
associated with parametric modeling techniques, and 
optimal sensitive band and spectral index combina-
tions are frequently employed. In this study, we con-
structed three spectral indices based on three 
datasets and used threshold segmentation to classify 
PWD infection stages. From Figure 8 and Tables 3 and 
4, while the classification results of PMSI and PTSI can 
meet the needs of practical applications, the recogni-
tion accuracy of each stage is still lower than that of 
classical machine learning classification algorithms, 
especially PHSI. Notably, due to the spatial variability 
of spectral and spatial information, it is difficult to 
construct an effective spectral index that can be 
applied to all types of remote sensing data. This 
directly resulted in poor transferability and usage 
limitations (Tables 3 and 4). Therefore, this method 
is unsuitable for different areas and sensors. Unlike 
the spectral analysis approach, machine learning 
algorithms are freely distributed and can manage 
noisy data, missing data values, both numerical and 
categorical data, and incorporate over sources of aux-
iliary spatial data (Stone and Mohammed 2017). Both 
SVM and RF classifiers were used to classify different 
PWD infection stages. Aside from the chlorosis stage 
classification results, accuracy was reasonably con-
stant across datasets. As shown in Tables 3 and 4, 
machine learning algorithms are effective and reliable 
for the classification and recognition of forest dis-
eases. Furthermore, a large amount of commercial 
software provides ideal and simple process platforms 
that can support the basic data analysis. However, the 
machine learning classifiers often have low suscept-
ibility to overfitting, and some decisive parameters 
are determined subjectively (such as the kernel para-
meters in SVM and tree numbers in RF). As a result, 
when the trial-and-error method is used to determine 
the optimal parameters, the time cost is considerable. 
Further, we also used 2D- and 3D-CNN to classify the 
PWD infection stages. It is obvious that the classifica-
tion accuracy of deep learning algorithms is not out-
standing compared to that of machine learning 
algorithms. This could be due to our network selec-
tion and training sample size. However, it is worth 
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noting that the hardware requirements and effective 
data volume for model training are very high, and this 
process is time-consuming.

In summary, if the flight altitude is low enough, the 
canopy density is suitable for obtaining pure pixels of 
all different infection stages, and there is sufficient 
corresponding ground survey data (pigments and 
water content at the minimum), the spectral analysis 
method is the best choice, especially for the red and 
gray stages. This method is relatively simple and can 
provide a clear explanation of the whole disease 
infection process through physiological changes. If 
there is a lack of corresponding ground-based infor-
mation, the deep learning algorithm may be the best 
in terms of its high accuracy and lack of need to 
consider the selection of classification features. 
Specifically, when selecting a classification algorithm, 
it is important to evaluate not only the efficiency and 
accuracy of an algorithm but also the data source 
types and actual application environments. For PWN 
damage mechanism research, the highest accuracy 
(both spectral and data itself, as well as the result 
accuracy) may be the first consideration, but for actual 
forest disease investigation, easy and effective system 
integration is most significant. Consequently, when 
combined with available data sources, the classic 
machine learning approach, especially the RF classi-
fier is arguably the best choice for multispectral data. 
The choice of optimal data analysis algorithm strongly 
depends on the specific problem. Therefore, it is not 
possible to provide general recommendations, but 
some criteria and simple results obtained in this 
study could help to identify applicable algorithms.

5.4. Limitations and summary

Manual forest disease surveying is time-consuming, 
labor-intensive, and prone to errors and omissions, 
particularly during the early stages of identification. 
Using low-altitude remote sensing and multi-modal 
data, the images and techniques used in this study 
showed positive results in identifying various PWD 
infection stages. However, this research has certain 
limitations.

On the one hand, the study’s research site was 
a pure pine forest that only suffered PWD damage. 
Although we tested the results in a coniferous-broad- 
leaf mixed forest (Site B), we eliminated the scattered 
broad-leaf trees in advance, and the classification 

effect was not as good as that of Site A (the influence 
of understory vegetation occupies a certain percen-
tage). However, a greater percentage of forests are 
theropencedrymion, or multi-species mixed conifer-
ous forests, and these forests are affected by numer-
ous pests and diseases. Further investigation is 
necessary to effectively distinguish between PWD 
damage and the damage caused by other pests and 
diseases. Considering the aforementioned issues, 
using time-series imaging data that can satisfy the 
biological and ecological characteristics of pests and 
diseases or the phenological characteristics of vegeta-
tion, it is possible to distinguish between various tree 
species as well as various diseases and insect pests. 
Effective combination or fusion methods of both 
images and point cloud data (UAV-based, ground- 
based, or ultra-high resolution image-based data) 
can be presented and used to distinguish between 
coniferous and broad-leaf trees based on structural 
and spectral features.

On the other hand, the infected tree canopies were 
manually delineated. However, manual delineate 
approach cannot be used for large-scale surveys, 
even the forest farm scale, which takes a lot of labor 
and material resources. Nowadays, there are a few 
well established techniques for automated forest 
canopy extraction. These techniques can be com-
bined with infection-stages detection algorithms, 
allowing for full automation of PWD infection trees 
detection. In future research, we can begin with 
weakly supervised or unsupervised classification algo-
rithms to achieve more accurate and efficient indivi-
dual infected-tree identification under the premise of 
automated crown extraction.

6. Conclusion

In this research, one hyperspectral dataset (HSI) and 
two multispectral datasets (MSI and MSI&TIR) were 
compared to detect PWD infection stages at the 
single tree level. The validity of these three UAV- 
based optical image datasets and the applicability 
of different classification algorithms for each dataset 
were analyzed. Importantly, the efficiency of the 
thermal dataset for the early PWD detection was 
verified.

The MSI&TIR dataset performs well in classifying 
the infection stages, especially the chlorosis stage. 
On the one hand, the combination usage of both red- 
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edge and NIR bands is the most significant for PWD 
infection-stage classification or other forest pest and 
disease detection, which encompasses discolor 
changes. Furthermore, it is obvious that multispectral 
sensor imagery is less expensive than hyperspectral 
images in actual investigation and is frequently avail-
able at a fine spatial resolution, making MSI&TIR an 
excellent tool for classifying, detecting, and mapping 
the PWD, particularly at the single tree level. On the 
other hand, when compared to the common classifi-
cation algorithms using different datasets, the 
machine learning and deep learning algorithms per-
formed consistently better than spectral analysis for 
each infected stage, especially the chlorosis stage 
classification using the MSI&TIR dataset. However, 
when the infected trees entered the gray stage, the 
accuracy varies by no more than 10% between the 
various algorithms (SVM, RF, 2D- and 3D-CNN algo-
rithms). Thus, we should consider not only the 
method itself but also basic properties such as the 
number of features and training samples, representa-
tives of samples, and classification systems. Thus, 
when the MSI&TIR data are chosen as data sources 
for PWD infection-stage detection, RF classification 
techniques may be considered the best option.
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