1,480 research outputs found

    Strong Phases and Factorization for Color Suppressed Decays

    Full text link
    We prove a factorization theorem in QCD for the color suppressed decays B0-> D0 M0 and B0-> D*0 M0 where M is a light meson. Both the color-suppressed and W-exchange/annihilation amplitudes contribute at lowest order in LambdaQCD/Q where Q={mb, mc, Epi}, so no power suppression of annihilation contributions is found. A new mechanism is given for generating non-perturbative strong phases in the factorization framework. Model independent predictions that follow from our results include the equality of the B0 -> D0 M0 and B0 -> D*0 M0 rates, and equality of non-perturbative strong phases between isospin amplitudes, delta(DM) = delta(D*M). Relations between amplitudes and phases for M=pi,rho are also derived. These results do not follow from large Nc factorization with heavy quark symmetry.Comment: 38 pages, 6 figs, typos correcte

    Low Mach number effect in simulation of high Mach number flow

    Full text link
    In this note, we relate the two well-known difficulties of Godunov schemes: the carbuncle phenomena in simulating high Mach number flow, and the inaccurate pressure profile in simulating low Mach number flow. We introduced two simple low-Mach-number modifications for the classical Roe flux to decrease the difference between the acoustic and advection contributions of the numerical dissipation. While the first modification increases the local numerical dissipation, the second decreases it. The numerical tests on the double-Mach reflection problem show that both modifications eliminate the kinked Mach stem suffered by the original flux. These results suggest that, other than insufficient numerical dissipation near the shock front, the carbuncle phenomena is strongly relevant to the non-comparable acoustic and advection contributions of the numerical dissipation produced by Godunov schemes due to the low Mach number effect.Comment: 9 pages, 1 figur

    Nonfactorizable contributions to BD()MB \to D^{(*)} M decays

    Full text link
    While the factorization assumption works well for many two-body nonleptonic BB meson decay modes, the recent measurement of BˉD()0M0\bar B\to D^{(*)0}M^0 with M=πM=\pi, ρ\rho and ω\omega shows large deviation from this assumption. We analyze the BD()MB\to D^{(*)}M decays in the perturbative QCD approach based on kTk_T factorization theorem, in which both factorizable and nonfactorizable contributions can be calculated in the same framework. Our predictions for the Bauer-Stech-Wirbel parameters, a2/a1=0.43±0.04|a_2/a_1|= 0.43\pm 0.04 and Arg(a2/a1)42Arg(a_2/a_1)\sim -42^\circ and a2/a1=0.47±0.05|a_2/a_1|= 0.47\pm 0.05 and Arg(a2/a1)41Arg(a_2/a_1)\sim -41^\circ, are consistent with the observed BDπB\to D\pi and BDπB\to D^*\pi branching ratios, respectively. It is found that the large magnitude a2|a_2| and the large relative phase between a2a_2 and a1a_1 come from color-suppressed nonfactorizable amplitudes. Our predictions for the Bˉ0D()0ρ0{\bar B}^0\to D^{(*)0}\rho^0, D()0ωD^{(*)0}\omega branching ratios can be confronted with future experimental data.Comment: 25 pages with Latex, axodraw.sty, 6 figures and 5 tables, Version published in PRD, Added new section 5 and reference

    Information-Based Hierarchical Planning for a Mobile Sensing Network in Environmental Mapping

    Get PDF
    This article investigates the problem of information-based sampling design and path planning for a mobile sensing network to predict scalar fields of monitored environments. A hierarchical framework with a built-in Gaussian Markov random field model is proposed to provide adaptive sampling for efficient field reconstruction. In the proposed framework, a nonmyopic planner is operated at a sink to navigate the mobile sensing agents in the field to the sites that are most informative. Meanwhile, a myopic planner is carried out on board each agent. A tradeoff between computationally intensive global optimization and efficient local greedy search is incorporated into the system. The mobile sensing agents can be scheduled online through an anytime algorithm to visit and observe the high-information sites. Experiments on both synthetic and real-world datasets are used to demonstrate the feasibility and efficiency of the proposed planner in model exploitation and adaptive sampling for environmental field mapping

    The quantum cryptographic switch

    Full text link
    We illustrate using a quantum system the principle of a cryptographic switch, in which a third party (Charlie) can control to a continuously varying degree the amount of information the receiver (Bob) receives, after the sender (Alice) has sent her information. Suppose Charlie transmits a Bell state to Alice and Bob. Alice uses dense coding to transmit two bits to Bob. Only if the 2-bit information corresponding to choice of Bell state is made available by Charlie to Bob can the latter recover Alice's information. By varying the information he gives, Charlie can continuously vary the information recovered by Bob. The performance of the protocol subjected to the squeezed generalized amplitude damping channel is considered. We also present a number of practical situations where a cryptographic switch would be of use.Comment: 7 pages, 4 Figure

    Parametrization of projector-based witnesses for bipartite systems

    Full text link
    Entanglement witnesses are nonpositive Hermitian operators which can detect the presence of entanglement. In this paper, we provide a general parametrization for orthonormal basis of Cn{\mathbb C}^n and use it to construct projector-based witness operators for entanglement detection in the vicinity of pure bipartite states. Our method to parameterize entanglement witnesses is operationally simple and could be used for doing symbolic and numerical calculations. As an example we use the method for detecting entanglement between an atom and the single mode of quantized field, described by the Jaynes-Cummings model. We also compare the detection of witnesses with the negativity of the state, and show that in the vicinity of pure stats such constructed witnesses able to detect entanglement of the state.Comment: 12 pages, four figure

    Heavy-to-light transition form factors and their relations in light-cone QCD sum rules

    Full text link
    The improved light-cone QCD sum rules by using chiral current correlator is systematically reviewed and applied to the calculation of all the heavy-to-light form factors, including all the semileptonic and penguin ones. By choosing suitable chiral currents, the light-cone sum rules for all the form factors are greatly simplified and depend mainly on one leading twist distribution amplitude of the light meson. As a result, relations between these form factors arise naturally. At the considered accuracy these relations reproduce the results obtained in the literature. Moreover, since the explicit dependence on the leading twist distribution amplitudes is preserved, these relations may be more useful to simulate the experimental data and extract the information on the distribution amplitude.Comment: 1+16 pages, no figure

    Quantum-noise-induced macroscopic revivals in second-harmonic generation

    Get PDF
    We investigate the behavior of the fundamental and second-harmonic fields in phase-matched traveling plane-wave second-harmonic generation, using the full-operator equations of motion. We find that, after a certain interaction length, both the macroscopic and quantum-statistical properties of the harmonic and fundamental fields are qualitatively different from those found in previous analyses. The mean fields do not vary in a monotonic way, but oscillate with the propagation length, leading to an unexpected periodic revival of the fundamental field, triggered by the quantum fluctuations always present in the mode. Accordingly, the amplitude noise of the fundamental, previously predicted to be perfectly squeezed for long interaction lengths, actually reaches a very small minimum for a definite length, then increases again

    General Stability Analysis of Synchronized Dynamics in Coupled Systems

    Full text link
    We consider the stability of synchronized states (including equilibrium point, periodic orbit or chaotic attractor) in arbitrarily coupled dynamical systems (maps or ordinary differential equations). We develop a general approach, based on the master stability function and Gershgorin disc theory, to yield constraints on the coupling strengths to ensure the stability of synchronized dynamics. Systems with specific coupling schemes are used as examples to illustrate our general method.Comment: 8 pages, 1 figur

    Hadronic Charmed Meson Decays Involving Tensor Mesons

    Full text link
    Charmed meson decays into a pseudoscalar meson P and a tensor meson T are studied. The charm to tensor meson transition form factors are evaluated in the Isgur-Scora-Grinstein-Wise (ISGW) quark model. It is shown that the Cabibbo-allowed decay Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+ is dominated by the W-annihilation contribution and has the largest branching ratio in DTPD\to TP decays. We argue that the Cabibbo-suppressed mode D+f2(1270)π+D^+\to f_2(1270)\pi^+ should be suppressed by one order of magnitude relative to Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+. When the finite width effect of the tensor resonances is taken into account, the decay rate of DTPD\to TP is generally enhanced by a factor of 232\sim 3. Except for Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+, the predicted branching ratios of DTPD\to TP decays are in general too small by one to two orders of magnitude compared to experiment. However, it is very unlikely that the DTD\to T transition form factors can be enhanced by a factor of 353\sim 5 within the ISGW quark model to account for the discrepancy between theory and experiment. As many of the current data are still preliminary and lack sufficient statistic significance, more accurate measurements are needed to pin down the issue.Comment: 11 page
    corecore