134 research outputs found
Generative Face Completion
In this paper, we propose an effective face completion algorithm using a deep
generative model. Different from well-studied background completion, the face
completion task is more challenging as it often requires to generate
semantically new pixels for the missing key components (e.g., eyes and mouths)
that contain large appearance variations. Unlike existing nonparametric
algorithms that search for patches to synthesize, our algorithm directly
generates contents for missing regions based on a neural network. The model is
trained with a combination of a reconstruction loss, two adversarial losses and
a semantic parsing loss, which ensures pixel faithfulness and local-global
contents consistency. With extensive experimental results, we demonstrate
qualitatively and quantitatively that our model is able to deal with a large
area of missing pixels in arbitrary shapes and generate realistic face
completion results.Comment: Accepted by CVPR 201
Diversified Texture Synthesis with Feed-forward Networks
Recent progresses on deep discriminative and generative modeling have shown
promising results on texture synthesis. However, existing feed-forward based
methods trade off generality for efficiency, which suffer from many issues,
such as shortage of generality (i.e., build one network per texture), lack of
diversity (i.e., always produce visually identical output) and suboptimality
(i.e., generate less satisfying visual effects). In this work, we focus on
solving these issues for improved texture synthesis. We propose a deep
generative feed-forward network which enables efficient synthesis of multiple
textures within one single network and meaningful interpolation between them.
Meanwhile, a suite of important techniques are introduced to achieve better
convergence and diversity. With extensive experiments, we demonstrate the
effectiveness of the proposed model and techniques for synthesizing a large
number of textures and show its applications with the stylization.Comment: accepted by CVPR201
On Manners and Respect Cultural Construction of Higher Vocational Colleges
Today higher vocational colleges vigorously carry out the cultural construction. Manners and respect culture as a part of our traditional culture is pushed forward during the cultural construction of vocational colleges. Based on the manners and respect cultural connotation, this paper gives us a comprehensive analysis on the value of manners and respect cultural construction. At the same time, it briefly summarized the value of carrying out manners and respect cultural construction in higher vocational colleges. The ways are proposed during the homage cultural construction of higher vocational colleges
Identification of the nonlinear systems based on the kernel functions
Constructing an appropriate membership function is significant in fuzzy logic control. Based on the multi-model control theory, this article constructs a novel kernel function which can implement the fuzzification and defuzzification processes and reflect the dynamic quality of the nonlinear systems accurately. Then we focus on the identification problems of the nonlinear systems based on the kernel functions. Applying the hierarchical identification principle, we present the hierarchical stochastic gradient algorithm for the nonlinear systems. Meanwhile, the one-dimensional search methods are proposed to solve the problem of determining the optimal step sizes. In order to improve the parameter estimation accuracy, we propose the hierarchical multi-innovation forgetting factor stochastic gradient algorithm by introducing the forgetting factor and using the multi-innovation identification theory. The simulation example is provided to test the proposed algorithms from the aspects of parameter estimation accuracy and prediction performance
- …