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SUMMARY

Constructing an appropriate membership function is significant in fuzzy logic control. Based on the multi-
model control theory, this paper constructs a novel kernel function which can implement the fuzzification
and defuzzification processes and reflect the dynamic quality of the nonlinear systems accurately. Then we
focus on the identification problems of the nonlinear systems based on the kernel functions. Applying the
hierarchical identification principle, we present the hierarchical stochastic gradient (H-SG) algorithm for the
nonlinear systems. Meanwhile, the one-dimensional search methods are proposed to solve the problem of
determining the optimal step sizes. In order to improve the parameter estimation accuracy, we propose the
hierarchical multi-innovation forgetting factor stochastic gradient (H-MIFG) algorithm by introducing the
forgetting factor and using the multi-innovation identification theory. The simulation example is provided to
test the proposed algorithms from the aspects of parameter estimation accuracy and prediction performance.
Copyright © 2021 John Wiley & Sons, Ltd.
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1. INTRODUCTION

System identification is theory of establishing the mathematical models of dynamical systems by
measuring the system inputs and outputs [1-3]. System modeling and parameter estimation are
the basis of all the control problems [4-9], so it is significant to build an appropriate model for
system prediction and control [10-15]. Many identification methods have been developed for linear
systems, but most practical systems have nonlinear characteristics in nature. Although nonlinear
system identification is challenging because of the difficulty to decide a general model structure
which can represent data from a nonlinear system, the identification of nonlinear systems plays
an important role in the design and analysis of control systems [16]. For decades, the control of
nonlinear systems has drawn ever-increasing research interests. Meanwhile, in the field of system
identification, a great deal of works have devoted to the identification of nonlinear systems [17-19].
For the Hammerstein nonlinear ARMAX systems, Cheng et al. proposed a multi-innovation
fractional-order stochastic gradient algorithm [20].

The application of fuzzy logic theory provides an effective way to deal with the approximate and
inexact nature of the real world [21,22]. Fuzzy logic control has been used to design control strategy
in industrial process control, biomedical research, pattern recognition and other fields [23-25].
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For the sake of completing a general fuzzy logic control, each of the components, that is, a
fuzzification part, an inference engine and a defuzzification part have to be implemented [26].
Various membership functions are developed for these parts in order to get a good performance
in the fuzzy logic control [27]. Among them, the Gaussian membership functions are widely used
in many areas [28-30]. However, for the complicated unknown nonlinear systems, the simple
fuzzification and defuzzification processes decrease the precision and dynamic quality of fuzzy
logic control [31,32]. To improve this situation, a novel kernel function is constructed in this paper,
which has a good performance in fitting the nonlinear systems. This method can further apply other
nonlinear functions to establish effective mathematical models which can also be used in the fuzzy
control processes or other areas.

Many methods have been developed to estimate the Gaussian functions. In the literature, Guo
derived a weighted least-squares method for estimating the parameters of a Gaussian function [33].
An algorithm was presented for fitting a Gaussian signal riding on a polynomial background by
transforming the nonlinear least-squares fitting into a standard linear least-squares fitting [34].
However, it is worth noting that these methods are restricted to estimating the parameters of
the Gaussian shaped functions. For decades, the hierarchical identification method has been used
to solve the identification problems of nonlinear systems [35-38]. Simultaneously, the multi-
innovation identification has shown the effectiveness in nonlinear system identification [39—41]. For
example, a multi-innovation stochastic gradient algorithm and a filtering based multi-innovation
stochastic gradient algorithm were proposed for a class of linear-in-parameters systems by
expanding a scalar innovation into a multi-dimensional vector [42]. Combining the hierarchical
identification technique with the multi-innovation theory, the novel methods are developed for
identifying the nonlinear systems.

Fuzzy logic has become an important technique for artificial intelligence since the fuzzy logic
allows introducing the human uncertain behaviour to the computer definite performance [43]. In
order to ensure the effective application of the fuzzy theory to practical problems, the kernel
functions are constructed based on the Gaussian membership functions. For the nonlinear systems
based on the kernel functions, we apply the hierarchical identification principle and decompose a
nonlinear system into two sub-systems, one of which contains the unknown parameter vector of
the linear sub-system, and the other contains the unknown parameter of the nonlinear part. These
parameter vectors are estimated interactively. In brief, we list the following contributions provided
in this paper.

e Based on the Gaussian membership functions, a novel kernel function is constructed for
the fuzzification and defuzzification processes, which has a good performance in fitting the
nonlinear systems.

e Combining the hierarchical identification principle with the gradient search, a hierarchical
stochastic gradient (H-SG) algorithm is proposed for the nonlinear systems. Then the one-
dimensional search methods are used to derive the optimal step sizes.

o For improving the estimation accuracy of the H-SG algorithm, a hierarchical multi-innovation
stochastic gradient (H-MISG) algorithm are presented for the nonlinear systems by making
full use of the innovations.

In summary, the rest of this paper is organized as follows. Section 2 describes the construction
process of the kernel functions. Based on the hierarchical identification principle, the H-SG
algorithm is proposed for the nonlinear systems in Section 3. Section 4 derives the H-MISG
algorithm and its variant by using the multi-innovation identification theory. Section 5 presents a
numerical example for demonstrating the effectiveness of the proposed algorithms. Finally, some
concluding remarks are given in Section 6.

2. PROBLEM DESCRIPTION

As one of the common membership functions in the fuzzy logic control, the Gaussian membership
functions are usually utilized to accomplish the fuzzification and defuzzification processes due to
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its unique smoothness, symmetry and clear physical meaning [44], the expression is given as

p(x) = exp {W} , —o0o << o0,

However, the simple fuzzy processing reduces the accuracy of the fuzzy models for the complex
nonlinear systems. As a result, the fuzzy models cannot accurately reflect the dynamic performance
of the complex nonlinear systems, and the development of new approaches becomes an unavoidable
challenge for engineers and researchers.

Therefore, we construct a kernel function for the fuzzification and defuzzification processes,
which has a good performance in fitting the nonlinear systems. Based on the Gaussian membership
functions, the proposed kernel functions are given as

F(CX,,@,A7]{/‘) = Zajfj('@7A’k)’

j=1

where a = [al, Qo, - -+ ,Oén}T, 8= [ﬁl,ﬁg, R ,ﬁn]T, A= [)\17 Ag, - 7)\n]T, fj(,@, A, k) is the
Gaussian membership function, i.e., f;(3, A, k) = exp[—3;(zr — A\;)?] and F(ex, B, A, k) denotes
the membership of the element x;, corresponding to the fuzzy set.

According to the given input x;, and the observation data s, (k = 1,2, - - - , L), the parameters o,
Bj and A\; ( =1,2,--- ,n) can be determined. Suppose that the order n is known, the data sy, is
measurable and the initial values are set to be x; = 0 and s, = 0 for k£ < 0. The optimal parameter
vectors «, 8 and A can be obtained by solving the optimization problem

anin [se = 0 0y £y (B AR o
HAPE T 2

The above equation indicate that the identification problem becomes a complex nonlinear
optimization problem. The proposed parameter estimation algorithms in this paper are based on
this criterion function. Many identification methods are derived based on the criterion functions
of the systems [45-49] and can be used to estimate the parameters of other linear systems and
nonlinear systems [50-54] and can be applied to other fields [S5—60] such as chemical process
control systems and information systems. The hierarchical identification methods have been used
to solve these identification problems of nonlinear systems, which can reduce the computational
burden by decomposing the complex identification models into several sub-models with smaller
dimensions and fewer parameters. Applying the hierarchical identification principle, the following
work focuses on the new recursive identification methods for the nonlinear systems based on the
kernel functions.

3. THE HIERARCHICAL STOCHASTIC GRADIENT ALGORITHM

In this section, the nonlinear system based on the kernel functions is decomposed into two
identification sub-systems, one contains the parameter vector a and the other contains the parameter
vectors B3 and A. In addition, the negative gradient search is widely adopted to deal with some
optimization problems [61]. Based on the gradient search, an hierarchical stochastic gradient (H-
SG) algorithm is proposed for the nonlinear systems.

3.1. Estimating the parameters of the linear sub-system

For any fixed 3 and A, the negative gradient search is used to compute « in the linear sub-system.
Define the information vector

(B, X k) := [exp[—Bi(zr — \1)?], exp[—Fa(wr — A2)?], -, exp[—Fn(zx — An)?]]" € R™.
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Define the error between the observation output s, and the model output F(«, 3, A, k) as
e(a,,@,)\,k’) =Sk — F(a7ﬁ7A7 k) =Sk — 77T(57>\7k)04 eR.

Let &y == [G1,k, Gy -+ 5 Gn, &]T denote the estimate of « at time k. Applying the negative gradient
search to solve the optimization problem in (1), we derive the stochastic gradient algorithm for
computing o

G = g1 + vien (B, A k) [sk — 0" (B, A, k)], (2)
1

vy = argmin—e?(éy, B, A, k), 3)
vix20 2

where 1 1, is the step size. The choice of the step size is critical in determining the overall accuracy
of the algorithm. Therefore, the one-dimensional search methods are derived to solve the difficulty
in determining the step size. Define hlvy 1] := e%(éu, B, A, k) for computing vy 1. The key idea
is to determine the negative gradient direction and to compute the step size, which makes h[v; ]
minimal, by the one-dimensional search of the negative gradient direction. The step size is solved
as follows

hlvie] = [se — 0" (8, A, k)éu]?
={sk =" (B, A\, k)[ax—1 +v1.m(B, A k)e(Gr_1, B, A k)]}°
=[sk =N (B, A\ k)&k—1 — 1.6 (BN, k)n(B, A, k)e(A—1, B, A, k)
= [e(ar—1, B, A k) — v1kl[n(B, A, k) |[e(b—1, B, A, k)]
= (a1, 8, A F)[L — v1kln(B, A k)7

The optimal step-size v , can be obtained by minimizing v x], and it is taken as

1
1% = .
R CWATE

To avoid the denominator being zero and cut down the sensitivity of the algorithm to noise in (2),
we should ensure that the step-size v j, tends to zero with k increasing. Therefore, v i, is taken as

vigi=1/r1g, 4)
"1,k =T1,k-1 + Hn(57A7k)H27 T1,0 = 1. (5)

Equations (2) and (4)—(5) form the stochastic gradient (SG) algorithm for estimating o:

. . 1 .
O = Of—1 + in(ﬁv)‘vk)e(akflaﬁa)‘vk)a (6)

s

k=151 4 [NBXK)|?, 0= 1 @)

For given 3 and A, the SG sub-algorithm in (6)—(7) can compute the parameter vector o in
a recursive way. Meanwhile, the gradient-based methods can be developed in the parameter
identification problem of the nonlinear model.

3.2. Estimating the parameters of the nonlinear sub-system

For any fixed «, the negative gradient search is applied to derive the stochastic gradient algorithm
for estimating B and A in the nonlinear sub-system. Define the derivations of the vector n(3, A, k)
to the vectors BT and AT respectively as

(B, A, k)]
A k)=
X(Ig’ ) ) 6ﬂT
= diag[— (x5, — M)® exp[—Bu(zx — Mi)?], — (21 — A2)” exp[—fa(zn — X2)?], -+,
—(x1 — A\p)? exp[— Bz — \y)?]] € R™*™,
Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2021)
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(B, k) = w

= diag[201 (zx — A1) exp[—P1(zk — \)?], 282 (z — A2) exp[—Ba(zr — A2)?], -+,
20 (T — ) exp[—Bn(zr — A)?]] € R™*™.

Let By == [Bix, Bokr -+ » Bg)" and A := [A1x, Aok, -+ » A&7 denote the estimates of 3 and A
at time k. Applying the negative gradient search to solve the optimization problem in (1), we derive
the stochastic gradient algorithm for computing 3 and A:

Bk = Bk—l + VZ,kX(lék—h Aa k)a[Sk - nT(Bk—h Aa k)a]7 (8)

Vo = argmine?(a, ﬁk, A k), 9)
Vo, 20

Xk - Xk—l + V3,k¢(ﬂ7 Xk—la k?)a[Sk - "7T(/8a Xk?—la k>a]a (10)

vs . = argmine® (e, B, Ar, k), (11)
v3, 1 2>0

where v 1, and v j are the step sizes. Similarly, the one-dimensional search methods are applied
to derive the optimal step-sizes v j, and v3 ;. Define h[vs i) := 62(a7[3;i, A, k) for computing vs .
Then substituting the first-order Taylor expansion of (3, A\, k) at 3 = Bx_; into the expression of
hlva i) gives
hlvak] = sk — 1" (Br, A, k)a]’
= {51 — 0" (Br—1, X, k) + (B, — Be-1)"X(Br-1, A, k) + 0(By — Br—1)] o}
={st = 0" (Br-1, A, k) + [rare(a, Beo1, A, k)X (Br—1, A, k)] "x(Br—1, A, k)
+0(Bx — Br—1)]a}?
= {st = 0" (Br-1, X, k) — vy re(e, Bro1, A, k)X (Br-1, X, k) "X (Br-1, X, k) ex
+o(Br, — Br-1)}>
= le(a, Br-1, A k) — vake(a, Br1, A, )X (Br—1, A, k)l |*” + o(Bk — Br—1)?
= 62(047Bk—1, AR - V2,k||X(/ék—17 A, k‘)04||2]2 + O(Bk - ﬁk—1)2~

The optimal step-size v j, can be obtained by minimizing h[Vg, «], and it is taken as

1
V27k = = .
HX(/@k)—lv Av k)(){||2

Considering the stability of the identification algorithm, the above equation can be modified to
Vo :=1/rop, Tog i =rop_1+ Ix(Br—1, A, k)ex|?, 790 = 1. (12)

Similarly, the step-size v j, is taken as

Vs = 1/r3 g, Taxi=7sr 1+ BB Ak 1, k)e|?, r3o=1. (13)
Equations (8), (10) and (12)—(13) form the SG algorithm for estimating 3 and A:

Be=Bior + —cla B A DX (Bir A e (14)

rop =721 + [X(Br-1, X K)el?, 720 =1, (15)

e =Apo1 + ;ﬂe(a,ﬁ, Ae—1, k)P (B, A1, k) e, (16)

rar =73 51+ |B(B, Ae 1, k)e|?, r30=1. (17)

There are the common problems among the sub-algorithms in (2)—(3) and (14)—(17) for estimating
the parameter vectors «, B and A, i.e., the right-hand sides of (2)—(3) and (14)—(17) contain
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the unknown parameters in each sub-algorithm, the identification problem becomes a complex
nonlinear optimization problem, the SG algorithms cannot be used directly for parameter estimation.
To overcome this problem, the interactive estimation methods are presented with the hierarchical
identification principle. The main idea is to use the previous estimates to substitute the unknown
parameter vectors between the two sub-algorithms.

3.3. Estimating the parameters of the nonlinear systems

Considering the parameter coupling between these sub-algorithms, the previous estimates 1,
Br—1 and Ap_; are used to substitute the unknown parameter vectors «, 3 and A in (2)—(3) and
(14)—(17). Define the parameter vector

0 :=[a", 8", \T]" € R3",

Let 6, := (&, 3 b )\T]T denote the estimate of @ at time k. Applying the hierarchical identification
methods, we derive the H-SG algorithm for the nonlinear systems:

. . 1

Qp=ap 1+ — Ny, (18)
T1,k

. . 1

Br = Br—1 + T XkQp—16k, (19)

. . 1 .

Ap=Ap—1 + f@kak—lek, (20)

ér = e(@n_1, Br_1, \e—1,k)
=5k — N Ok—1, (21)
Ak =1(Br-1, Ae—1, k)
= [eXP[—ﬁ1,k—1($k - ;\1,k—1)2]7exp[—52,k—1($k - 5\2,k—1)2], SR
exp[—nk—1(@r = An—1)*]]", (22)
Xt = X(Br-1, Ae-1, k)
= diag[—(zx — ;\1,k71)2 eXp[—Bl,k—l(xk - 5\1,1971)2]7
G 5\2,1#1)2 eXP[—sz—l(xk - :\2,k71)2], T
—(@k — Ang1)? exp[—Bnr1(z — ;\n,k—1)2ﬂa (23)
&), =D(Br-1, i1, k)
= diag[261 x—1 (T — Mp—1) expl—Brr1(zx — AMa_1)?],
232,1@—1(% — 5\2,k—1) eXp[—Bz,/c—l(l‘k — 5\271«—1)2], R

2B k—1(2k — Anp—1) €XP[— B k1 (k — Ank—1)?]]; (24)
ik =Tk + |10k (25)
Tok =To k1 + | Xp&r_1]?, (26)
rax=7T3h-1 + ||Préu_1]?, (27)
O = [o. B, AT, (28)
G =[G g, o, -+, G i) (29)
mfmmah~ﬁmﬁ (30)
= Ak A2 AT (31)

The computation procedure of the H-SG algorithm in (18)—(31) is summarized as follows.
1. To initialize, let k = 1, &g = 41,0, d2,0, -+ Gn,0]" = 1n/Po, Bo = [Br,0, B2,05 -+ Bnjo]" =
1./Pos Ao = [A1.0s A2.05 = s Ano]T = 1,,/Pos po = 105, 71 9 = 129 = 130 = 1, give an error

tolerance £ > 0.

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2021)
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RECURSIVE PARAMETER ESTIMATION FOR A NONLINEAR SYSTEM 7

2. Collect the observation data xj and si, compute and form the information vector 7
using (22).

3. Compute and form the information matrixes X and b, using (23)—(24).

4. Compute the innovation é;, using (21), compute the reciprocals of the step-sizes 71 j, 72, and
3.1 using (25)—(27).

5. Update the parameter estimation vectors &y, ﬁk and A using (18)—(20), form the estimate
6), using (28).

6. Read out the estimates & i, ng and S\j,k,j =1,2,---,n, from ay, Bk and 5\k in (29)-(31).

7. Compare ) with 0;_1: if ||4§;€ — ék,lﬂ > ¢, increase k by 1, and go to Step 2; otherwise,
obtain the parameter estimates and terminate this procedure.

The H-SG algorithm in (18)—(31) estimates the parameter vectors «, (3 and X in an interactive
way. The innovation é;, in (21) is a scalar. In order to make full use of the observation data, we apply
the multi-innovation theory and derive an interactive multi-innovation parameter estimation method
in the next section.

4. THE HIERARCHICAL MULTI-INNOVATION STOCHASTIC GRADIENT ALGORITHM

The multi-innovation identification is the innovation expansion based identification. Applying the
multi-innovation identification theory into basic recursive identification algorithms such as the least
squares algorithm and the stochastic gradient algorithm can improve the parameter estimation
accuracy [62, 63]. In the following, based on the multi-innovation identification theory, taking
advantage of the innovations generated by the newest [ data {sg, Sk—1,- - , Sp—i+1} to expand the
innovation é;, in (18)—(20) into the innovation vector E(l) gives

E():=S() - I'"(l)éy_y € R, (32)

where [ denotes the innovation length, S(1) is the stacked output vector of sy, I'(l) is the stacked
information matrix of 9y, i.e.,

S(1) = (8, k1, s Sp—1+1)" € R, (33)

D(1) = [Ag, D1, i) € R™E (34)

Since E(1) = é, S(1) = s and I'(1) = 7y, for [ = 1, based on the stochastic gradient algorithm
in (18)—(20) and (25)—(27), the H-MISG algorithm for estimating o, 3 and A can be written as

. . 1 -
= &1 + —PO)E), (35)
T1,k

. 1. 3

Br=Br-1+ Q10 w()E(l), (36)

. . 1 -

A =Ap_1 + r—ak_l o :(Z)E(l), (37
Tik=T1k-1+1 ||77k||2, r1,0 = 1, (38)
ok =T k1 + ||Gr_10Pp|%, r20 =1, (39)
rax=7r3h-1 + |ar_10Cel?, r3o=1, (40)

where the symbol B o C represents the Hadamard product, that is, B = [b;;] € RP*?, C = [¢;;] €
RP*4?, B o C = [b;jc;j] € RP*4, the information vectors '&k and ék and the stacked information
matrixes ¥ (1) and Z (1) are defined respectively as

P = [~ (2 — Ag—1)? exp[—Brp—1(zr — Ap-1)?],

—(ka - ;\2,k—1)2 eXp[-Bz,k—l(ﬂﬁk - ;\2,k—1)2], T

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2021)
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—(@k = Mk—1)? exp[—Lrr_1(zr — Ar_1)?]]T € R, (41)
Co= [231,1@71(% — 5\1,1c71) eXP[—Bl,k—1($k — 5\1,k71)2],
2B k—1(x — Mg 1) exp|—Fop_1(zx — :\Q,k—1)2], I

2Bnk—1(Tk — Ank—1) exXp[—Bnr—1 (T — Ans1)?]]" € R, (42)

(1) := [P, Y1, Pr_11] € R, (43)

E(1) = [Cro Crm1v o Chorgr] € R (44)

Equations (32)—(44) form the H-MISG algorithm for the nonlinear systems:

b=y + —— POE(), (4$)
T1,k

B =B 1 + —— s o B(E(), (46)
T2,k

M= Aot + Gy 0 EW)E(), (47)
T3,k

E()=S() - I'"(I)é&_1, (48)

S() =[5, 8k-1," " »Sk—141) " (49)

D) = [ M1, Mt (50)

D(1) = [Pr, Y1, Y1), (51

E(1) = [Crr Cror 5 Comial, (52)

M = lexp[—B1 p—1(xr — Mor—1)?] exp[—Bap—1 (T — Aog—1)?] -+
exp— B k-1 (xx — Anp-1))]", (53)

P = [ (2% — A p—1)? exp[—B1 -1 (x5 — A p—1)?],
—(@k = Aop—1)? exp[—Pa - 1(37k_)\2k D2
— (@ = An=1)? exp[= B k1 (@r = Anp 1>2n (54)
=281 5—1(xk — Ap—1) exp[—Brs—1(zx — Ap—1)?],
282 -1 (21 — Aa 1) expl—Fap—1(zr — A1)+,
2

265 k-1 (ke — Anp—1) exp[—Fp -1 (r — Anp—1)?]]", (55)
ik ="T1k—1 + |0k (56)
ror ="Tok1 + ||Gr_1 0Pk, (57)
rax=r3p-1 + ||ér_1 0 Ckl?, (58)
ék = [, B AT, (59)
= [@1k, Q2 ks G k] (60)
= [Bi Boer s Bl (61)
)\k = Az s Ani] (62)

The computation procedure of the H-MISG algorithm in (45)—(62) is summarized as follows.

1. To initialize, let k = 1, &g = [1,0, 42,0, -, Gin,0]" = 1n/Po, Bo = [Br,0, F2,05 -+ Bnyo]" =
1,/P0s Ao = [A1,0, A2,0, 5 Ano]" = 15/po, po = 106, 719 = 120 = 730 = 1, give an error
tolerance € > 0.

2. Collect the observation data x;, and s, form the stacked output vector S(1) using (49).

3. Compute and form the information vector 7j; using (53), form the stacked information matrix
I'(1) using (50).

4. Compute and form the information vectors ¢k and ék using (54)—(55), form the stacked
information matrixes ¥ ({) and Z (1) using (51)—(52).

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2021)
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5. Compute the innovation vector E(I) using (48), compute the reciprocals of the step-sizes 71 ,
T2, and r3  using (56)—(58).

6. Update the parameter estimation vectors Gy, Bk and Xk using (45)—(47), form the estimate
0y, using (59).

7. Read out the estimates &; 1, Bj,k and /A\j,k,j =1,2,---,n, from ay, Bk and A\, in (60)—(62).

8. Compare 0, with 0,1 if ||0A;C — ék,lﬂ > ¢, increase k by 1, and go to Step 2; otherwise,
obtain the parameter estimates and terminate this procedure.

At each recursion, the H-SG algorithm involves the current measurement data and innovation,
the H-MISG algorithm applies all the current and the preceding (! — 1) measurement data and
innovations, which makes the latter have a higher parameter estimation accuracy. The introduction
of the innovation length increases the number of data used in the algorithm compared with the H-
SG algorithm. Although the parameter estimation accuracy can be effectively improved, too long
innovation length leads to a large amount of computation. However, the increased computation
burden is not heavy, and it is tolerable.

In order to obtain more accurate parameter estimates without increasing the computational cost
of the H-MISG algorithm, we introduce the forgetting factors 71, 2 and -3 into (56)—(58):

rik=mr1e-1 + Ae)?, 0< 7 <1, (63)
Tok =%aT2 k-1 + |[Gr—1 0 P 0 <y <1, (64)
T3k =733 k-1 + |[Gr_10 (k% 0 <3 < 1. (65)

Replacing (56)—(58) in the H-MISG algorithm with (63)-(65), we obtain the variant of the H-
MISG algorithm, that is, the H-MIFG algorithm for the nonlinear systems. The methods proposed
in this paper can combine some statistical tools and optimal strategies [64—72] and idenfitication
algorithms [73-80, 80, 81] to study the parameter estimation issues of linear and nonlinear systems
with colored noises and can be applied to other fields [82—-86] such as mechnical systems and power
systems. Before using the proposed algorithms to identify the nonlinear systems, we should consider
the order determination of the kernel functions. The orthogonalization procedure and correlation
analysis can be adopted to determine the orders [87].

5. EXAMPLE

Consider the following nonlinear system:

sk = a exp[—1 (zr — )\1)2] + g exp|—LFa(zk — )\2)2] + v
=0.9exp[—0.25(z — 1.2)%] + 0.45 exp[—0.64(z + 1.2)%] + vy

The parameters to be estimated are
0 = [a1, az, B1, B2, A1, A2]" = [0.90,0.45,0.25,0.64,1.20, —1.20]".

In simulation, the input {z;} is taken as a uniformly distributed random signal sequence between
the intervals [—5, 5] with zero mean, the disturbance {vy} is taken as a white noise sequence with
zero mean and variance o2. The measurement data length is taken as L, = 2000.

To illustrate the advantage of the proposed multi-innovation identification algorithm, fix the noise
variance o2 = 0.102, and use the H-SG algorithm and the H-MISG algorithm with the innovation
lengths [ = 2 and [ = 3 to identify the nonlinear system, respectively. The parameter estimates and
their errors are shown in Tables I-II, and the parameter estimation errors & := ||@), — 6]|/|@|| versus
k are shown in Figure 1, from which the following conclusions can be drawn: (1) the parameter
estimation errors decrease as the data length & increases for all the algorithms proposed in this
paper, the H-MISG algorithm has higher parameter estimation accuracy than the H-SG algorithm;
(2) the parameter estimation accuracy of the H-MISG algorithm increases with the innovation length
[ increasing.

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2021)
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Table 1. The H-SG estimates and errors with o2 = 0.102

k aq &%) B1 B2 Al A2 5(%)
100 1.24809 0.30464 0.42691 0.31561 1.08186  -1.21408 25.90844
200 1.17344  0.32579 0.39428 0.34327 1.07897 -1.23349  22.18602
500 1.10139  0.34515 0.35066 0.37079 1.09779 -1.26123  18.43658
1000 1.05922  0.34868 0.33046  0.38711 1.11689  -1.27472  16.47982

2000 1.02677 0.35935 0.30482 0.40012  1.13062 -1.28524  14.90152

True values  0.90000  0.45000 0.25000  0.64000  1.20000  -1.20000

Table II. The H-MISG estimates and errors with [ = 2, = 3 and 0% = 0.102

l k aq a2 &) B A1 Ao 5(%)
2 100 1.06884  0.29424  0.28249  0.53340 0.95716  -1.16588  16.94499
200 1.01139  0.30826  0.25719 0.53955 0.99778 -1.21046  13.84334
500 0.95958  0.31519 0.23337  0.54549  1.06234  -1.25980 11.06718
1000  0.93944  0.32196  0.22838  0.54854 1.07148 -1.27356  10.56413
2000 0.92290 0.33117 0.22156  0.55174 1.07876  -1.28379  10.14977
3 100 0.96552  0.42678  0.25872  0.63463  1.06055 -1.21844 7.52629
200 0.94461 0.42616 0.25475 0.63987 1.13168  -1.25819 4.93622
500 0.92685 0.42054 0.24314  0.64324  1.19381 -1.26884 3.83622
1000 0.91942  0.42250  0.24529  0.64488  1.17695  -1.25277 3.20929
2000 091185 0.42721 0.24025 0.64688 1.17659  -1.24294 2.70537
True values  0.90000  0.45000 0.25000  0.64000  1.20000  -1.20000

0.5F

0.4 b

0.3

o.2r H-SG (H-MISG, I = 1)

H-MISG, | =2

H-MISG, /=3

1 1 1 1 1 1 1 1 1
0 200 400 600 800 100 1200 1400 1600 1800 2000
k

Figure 1. The H-SG and H-MISG estimation errors ¢ against k£ with [ = 2,1 = 3 and o? =0.10?

To study the influence of different noises on parameter estimation, fix [ = 3, and apply the H-
MISG algorithm with the noise variances 02 = 0.102, 02 = 0.152 and 02 = 0.20? to identify the
nonlinear system, respectively. The results are exhibited in Table III and Figure 2, from which we
can see that the parameter estimation errors of the H-MISG algorithm become small as the noise
variance decreases.

To verify the performance of the H-MIFG algorithm, fix o2 = 0.10%, and use the H-SG algorithm,
the H-MISG algorithm with [ = 3 and the H-MIFG algorithm with [ = 3 and v; = 0.99 to estimate
the nonlinear system, respectively. The parameter estimates and their errors are listed in Tables II
and IV, the parameter estimation errors ¢ versus k are shown in Figure 3. From which we can see
that the parameter estimation errors decrease after introducing a forgetting factor, and the H-MIFG

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2021)
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Table II1. The H-MISG estimates and errors with [ = 3, 02 = 0.152 and 02 = 0.202

o? k g g B1 B2 A1 A2 5(%)
0.15% 100 095769 0.45762 0.27223 0.51632 1.08362 -1.18255 8.69853
200  0.94065 0.45135 0.27097 0.52903 1.18894  -1.22337 5.87715
500 092138 0.44130 0.25482 0.53789 1.27437 -1.23411 6.36388
1000 091171 0.44280 0.25819 0.54318 1.24537 -1.20525 5.18116
2000 090110 0.44949 0.25005 0.54934 1.24401 -1.19100 4.84347
0.20? 100 096172 0.48846 0.28504 0.48432 1.07916 -1.15785 10.39167
200  0.94642 047710 0.28610 0.50268 1.22123 -1.20562 7.34268
500 0.92571 046145 0.26465 0.51529 1.32658 -1.21690 8.67809
1000 091322 0.46198 0.26843 0.52282 1.28640 -1.17965 7.14288
2000 0.89989 0.46948 0.25720 0.53153  1.28444  -1.16259 6.89113
True values 0.90000 0.45000 0.25000 0.64000 1.20000  -1.20000

0.2 b

0 200 400 600 800 100 1200 1400 1600 1800 2000
k

Figure 2. The H-MISG estimation errors & against k with [ = 3, 02 = 0.10%, 0% = 0.15% and 2 = 0.20?

algorithm with the appropriate innovation length and forgetting factor is effective to identify the
nonlinear system.

Table IV. The H-MIFG estimates and errors with [ = 3, v = 0.99 and % =0.102

k ay Qo B1 B2 A1 A2 3(%)
100 0.95854  0.44696  0.25986  0.63426 1.07941 -1.20499  6.44581
200 0.93072 0.44529 0.25736 0.63932 1.15212 -1.24413 3.47194
500 0.92741 0.42271 0.24329 0.64154 1.20988 -1.25015 3.08588
1000 0.91150  0.44905  0.24625 0.64276 1.18898  -1.23554 1.87778
2000 0.91004 0.46284  0.24447  0.64450 1.19583 -1.22542 1.49837

True values  0.90000  0.45000  0.25000  0.64000  1.20000  -1.20000

Figure 4 shows the parameter search process (solid line: the estimates, dotted line: the true values)
of the H-MIFG algorithm under [ = 3, ; = 0.99 and 02 = 0.10%. As shown in Figure 4, all the
estimated parameters gradually approach the true values as the data length k increases.

For the model validation, we use L, = 100 observations from £k = L.+ 1to k = L. + L, and
the predicted model by the H-MIFG algorithm with [ = 3, 7; = 0.99 and 02 = 0.102. In order to
verify the fitting effect, the input {z) } between k = L. + 1 and k = L. + L, is taken as a uniformly
distributed signal sequence between the intervals [—5, 5]. The predicted data §j and the measurement

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2021)
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0.1 H-MISG, /=3 H-MIFG, /=3,7,=0.99 -

0 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
k

Figure 3. The H-SG, H-MISG and H-MIFG estimation errors & against k with 02 = 0.102

Parameter estimates
' '

15 I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
k

Figure 4. Parameter estimates against k for the H-MIFG algorithm with [ = 3, v; = 0.99 and 02 = 0.102

data sy, are plotted in Figure 5. To evaluate the prediction performance, we define and compute the
mean square error (MSE) as follows

1 Le+Ly 2
. 3 2 —
MSE := lLr E [k — sk ‘| = 0.10875.
k=L.+1

The MSE is close to the standard deviation of the noise. Combine with Figure 5, it is clear that
the predicted data is close to the measurement data, which means the kernel functions have a good
performance in fitting the nonlinear systems.

6. CONCLUSIONS

The novel kernel function is constructed for fitting the nonlinear systems in this paper, which can
be applied to the processes of fuzzy control. Then we focus on the identification problems of the
nonlinear systems based on the kernel functions. Applying the hierarchical principle, we propose
the H-SG algorithm for the nonlinear systems. The optimal step sizes are deduced by using the one-
dimensional search methods. To improve the estimation accuracy, we present the H-MISG algorithm

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2021)
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Figure 5. The predicted data §;, and the measurement data s; for the H-MIFG algorithm

for the nonlinear systems by using the multi-innovation theory. Moreover, the forgetting factors
are introduced to obtain the H-MIFG algorithm which has more accurate parameter estimates.
The simulation results indicate that the H-MIFG algorithm with the appropriate innovation length
and forgetting factor is effective to identify the nonlinear systems. In the future work, we will
extend the methods to other nonlinear systems with different structures and disturbances, and study
the estimation methods of model orders. The proposed approaches proposed in the paper can be
extended to study the parameter identification problems of other nonlinear systems with colored
noises and can be applied to other fields [88-93] such as signal analysis and engineering application
systems [94-103], information processing, transportation communication systems [104—111] and
SO on.
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