39 research outputs found

    Flame-Retardant and Thermal Degradation Mechanism of Caged Phosphate Charring Agent with Melamine Pyrophosphate for Polypropylene

    Get PDF
    An efficient caged phosphate charring agent named PEPA was synthesized and combined with melamine pyrophosphate (MPP) to flame-retard polypropylene (PP). The effects of MPP/PEPA on the flame retardancy and thermal degradation of PP were investigated by limiting oxygen index (LOI), vertical burning test (UL-94), cone calorimetric test (CCT), and thermogravimetric analysis (TGA). It was found that PEPA showed an outstanding synergistic effect with MPP in flame retardant PP. When the content of PEPA was 13.3 wt% and MPP was 6.7 wt%, the LOI value of the flame retardant PP was 33.0% and the UL-94 test was classed as a V-0 rating. Meanwhile, the peak heat release rate (PHRR), average heat release rate (AV-HRR), and average mass loss rate (AV-MLR) of the mixture were significantly reduced. The flame-retardant and thermal degradation mechanism of MPP/PEPA was investigated by TGA, Fourier transform infrared spectroscopy (FTIR), TG-FTIR, and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDXS). It revealed that MPP/PEPA could generate the triazine oligomer and phosphorus-containing compound radicals which changed the thermal degradation behavior of PP. Meanwhile, a compact and thermostable intumescent char was formed and covered on the matrix surface to prevent PP from degrading and burning

    Factors influencing serum calcium levels and the incidence of hypocalcemia after parathyroidectomy in primary hyperparathyroidism patients

    Get PDF
    BackgroundParathyroidectomy (PTX) is an effective treatment for primary hyperparathyroidism (PHPT) patients. Postoperative hypocalcemia is a common complication after PTX. This study aimed to analyze the factors influencing serum calcium levels and the incidence of hypocalcemia after parathyroidectomy in primary hyperparathyroidism patients.MethodsThe retrospective study included 270 PHPT patients treated with PTX and collected their demographic and clinical information and their laboratory indices. Factors influencing serum calcium levels and hypocalcemia after PTX in PHPT patients were analyzed using univariate and multifactorial analyses.ResultsFirst, in patients with normal preoperative serum calcium levels (2.20–2.74 mmol/L), the higher the preoperative alkaline phosphatase and serum phosphorus levels, the lower the postoperative serum calcium levels. Furthermore, the higher the preoperative serum calcium levels and the accompanying clinical symptoms, the higher the postoperative serum calcium levels. Low preoperative serum calcium levels were shown to be a risk factor for postoperative hypocalcemia (OR=0.022), and the optimal preoperative serum calcium threshold was 2.625 mmol/L (sensitivity and specificity were 0.587 and 0.712, respectively). Second, in the mild preoperative hypercalcemia group (2.75-3.00 mmol/L), the older the patient, the higher the preoperative and postoperative serum calcium levels, the higher the postoperative serum calcium; the lower the alkaline phosphatase and calcitonin levels, the higher the postoperative serum calcium levels. On the other hand, the younger the patient was, the more likely hypocalcemia blood was (OR=0.947), with an optimal age threshold of 47.5 years (sensitivity and specificity were 0.543 and 0.754, respectively). Third, in the preoperative moderate to severe hypercalcemia group (>3.0mmol/L), patients undergoing a combined contralateral thyroidectomy and a total thyroidectomy had low postoperative serum calcium levels.ConclusionPatients with different preoperative serum calcium levels had various factors influencing their postoperative serum calcium levels and postoperative hypocalcemia, which facilitated the assessment of their prognosis

    The CNDP1 (CTG)(5) Polymorphism Is Associated with Biopsy-Proven Diabetic Nephropathy, Time on Hemodialysis, and Diabetes Duration

    Get PDF
    Considering that the homozygous CNDP1 (CTG)5 genotype affords protection against diabetic nephropathy (DN) in female patients with type 2 diabetes, this study assessed if this association remains gender-specific when applying clinical inclusion criteria (CIC-DN) or biopsy proof (BP-DN). Additionally, it assessed if the prevalence of the protective genotype changes with diabetes duration and time on hemodialysis and if this occurs in association with serum carnosinase (CN-1) activity. Whereas the distribution of the (CTG)5 homozygous genotype in the no-DN and CIC-DN patients was comparable, a lower frequency was found in the BP-DN patients, particularly in females. We observed a significant trend towards high frequencies of the (CTG)5 homozygous genotype with increased time on dialysis. This was also observed for diabetes duration but only reached significance when both (CTG)5 homo- and heterozygous patients were included. CN-1 activity negatively correlated with time on hemodialysis and was lower in (CTG)5 homozygous patients. The latter remained significant in female subjects after gender stratification. We confirm the association between the CNDP1 genotype and DN to be likely gender-specific. Although our data also suggest that (CTG)5 homozygous patients may have a survival advantage on dialysis and in diabetes, this hypothesis needs to be confirmed in a prospective cohort study

    Evaluation of Oil-Absorbing Film for Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging (IDESI-MSI) on Biological Samples

    No full text
    Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging (IDESI-MSI) has proven to be a robust and reliable tool for chemically imaging biological samples such as fungi, animal tissues, and plants, but the choice of the imprint substrate is crucial. It must effectively transfer maximum amounts of species from the sample while preserving the original spatial distribution of detected molecules. In this study, we explored the potential of utilizing an oil-absorbing film, known for its soft nature and excellent lipophilicity, as an imprint substrate for IDESI-MSI on biological samples. To assess the transfer efficiency of the amounts of molecules and molecular patterns, we conducted experiments using mouse brain tissue. The result shows that more than 90% of the analytes can be transferred to the oil-absorbing film from the original tissue. A comparison of IDESI-MSI results between the oil-absorbing film and the original tissue demonstrates the material’s capability to transfer most molecules from the original tissue and retain images of different analytes with high spatial fidelity. We extended our investigation to plant imaging, where we applied IDESI-MSI to a cross-section of okra. The oil-absorbing film exhibited promise in this context as well. These findings suggest that IDESI-MSI utilizing the oil-absorbing film holds potential across various research fields, including biological metabolism, chemistry, and clinical research, making this technique widely applicable

    Study on the Enhancement Effect of Synergy between Multi-Size Functionalized Boron Nitride and Graphene Oxide on the Thermal Properties of Phase Change Composites

    No full text
    Boron nitride nanosheet (BNNS) and graphene oxide (GO) as a single filler can effectively improve the thermal conductivity of the composites, and the synergistic mechanism of BNNS and GO was investigated in this paper. In this study, BNNS was first surface-functionalized and the multi-sized (50 nm, 200 nm, 500 nm) modified BNNS (A-BN) were attached to GO through non-covalent bonding interactions to form a cross-linked structure. Then, A-BN and GO were used as thermal fillers and support material adsorption eutectic phase change materials (PCMs) to prepare composite phase change material (CPCM). Characterization results show that small-size A-BN was more likely to form dense thermal networks with good compatibility and interface connectivity between PCMs, A-BN, and GO, ensuring that PCMs can be stored in the network without leaking. When the size of the BNNS was greater than 200 nm, the advantage of thermal conductivity obtained by A-BN was no longer obvious, and the phase change behavior of CPCM was inhibited. In general, the prepared CPCM has the ideal thermal response and thermal stability, which is very suitable for energy storage and thermal management applications

    Synthesis of Zirconium-Containing Polyhedral Oligometallasilsesquioxane as an Efficient Thermal Stabilizer for Silicone Rubber

    No full text
    Free radicals play a negative role during the thermal degradation of silicone rubber (SR). Quenching free radicals is proposed to be an efficient way to improve the thermal-oxidative stability of SR. In this work, a novel zirconium-containing polyhedral oligometallasilsesquioxane (Zr-POSS) with free-radical quenching capability was synthesized and characterized. The incorporation of Zr-POSS effectively improved the thermal-oxidative stability of SR. The T5 (temperature at 5% weight loss) of SR/Zr-POSS significantly increased by 31.7 °C when compared to the unmodified SR. Notably, after aging 12 h at 280 °C, SR/Zr-POSS was still retaining about 65%, 60%, 75%, and 100% of the tensile strength, tear strength, elongation at break, and hardness before aging, respectively, while the mechanical properties of the unmodified SR were significantly decreased. The possible mechanism of Zr-POSS for improving the thermal-oxidative stability of SR was intensively studied and it was revealed that the POSS structure could act as a limiting point to suppress the random scission reaction of backbone. Furthermore, Zr could quench the free radicals by its empty orbital and transformation of valence states. Therefore, it effectively suppressed the thermal-oxidative degradation and crosslinking reaction of the side chains

    Dynamic Yarn-Tension Detection Using Machine Vision Combined with a Tension Observer

    No full text
    Machine vision can prevent additional stress on yarn caused by contact measurement, as well as the risk of hairiness and breakage. However, the speed of the machine vision system is limited by image processing, and the tension detection method based on the axially moving model does not take into account the disturbance on yarn caused by motor vibrations. Thus, an embedded system combining machine vision with a tension observer is proposed. The differential equation for the transverse dynamics of the string is established using Hamilton’s principle and then solved. A field-programmable gate array (FPGA) is used for image data acquisition, and the image processing algorithm is implemented using a multi-core digital signal processor (DSP). To obtain the yarn vibration frequency in the axially moving model, the brightest centreline grey value of the yarn image is put forward as a reference to determine the feature line. The calculated yarn tension value is then combined with the value obtained using the tension observer based on an adaptive weighted data fusion method in a programmable logic controller (PLC). The results show that the accuracy of the combined tension is improved compared with the original two non-contact methods of tension detection at a faster update rate. The system alleviates the problem of inadequate sampling rate using only machine vision methods and can be applied to future real-time control systems

    Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels

    No full text
    Thermoelectric cells (TEC) directly convert heat into electricity via the Seebeck effect. Known as one TEC, thermogalvanic hydrogels are promising for harvesting low-grade thermal energy for sustainable energy production. In recent years, research on thermogalvanic hydrogels has increased dramatically due to their capacity to continuously convert heat into electricity with or without consuming the material. Until recently, the commercial viability of thermogalvanic hydrogels was limited by their low power output and the difficulty of packaging. In this review, we summarize the advances in electrode materials, redox pairs, polymer network integration approaches, and applications of thermogalvanic hydrogels. Then, we highlight the key challenges, that is, low-cost preparation, high thermoelectric power, long-time stable operation of thermogalvanic hydrogels, and broader applications in heat harvesting and thermoelectric sensing

    Natural and Anthropogenic Sources of East Asian Dust

    No full text
    Nd-Sr isotopic signatures of loess, modern dust, and their potential source materials are systematically investigated to discriminate the natural and anthropogenic sources of eastern Asian dust. Chinese loess is an eolian deposit that has accumulated over the past few million years, and is characterized by a negative Nd-Sr isotopic correlation that implies binary sources for the natural background of eastern Asian dust. Loess in northeastern China shows the highest εNd(0) value, while loess in western China has the lowest εNd(0). Considering the Nd-Sr isotopic signatures of the potential sources, we propose that the high εNd(0) end member is derived from the arid lands around the northern boundary of China while the low εNd(0) end member originates from the deserts on the northern margin of the Tibetan Plateau. Chinese Loess Plateau deposits are dominated by northern margin Tibetan Plateau dust, suggesting a strong link between the thick eolian deposit in this region and the evolution of the Tibetan Plateau. The long-range transported spring dust in both Nanjing (south China) and Japan has an Nd-Sr isotopic composition similar to that of loess. However, spring dust in Beijing (north China) has a much lower εNd(0) value, indicating an additional anthropogenic contribution of low εNd(0) material, possibly from the sandy lands in the adjacent north and west
    corecore