6,597 research outputs found

    Flutter Prediction for Aircraft Conceptual Design

    Get PDF
    Flutter prediction is usually a knowledge-based analysis process that aims to reduce the cost of aeroelastic stability margin certification. However, early detection of flutter problems is beneficial in the development of unconventional aircraft. The recently developed automation tool ConceptFEA for structural sizing of aircraft concepts paves the way for rapid physics-based flutter prediction of aircraft concepts. A match-point iteration procedure using the p-k method is implemented for ConceptFEA with minimum user input requirements to generate flutter boundary points. A subsonic business jet concept and its high aspect-ratio wing variant are used to demonstrate how the newly developed flutter prediction capability can be used during aircraft conceptual design. Sized structures, flutter boundary curves, and flutter sensitivity analysis results are generated for these two concepts using ConceptFEA. The relevant equivalent plate theory is provided to show the quantitative relationships between a stiffened panel and its equivalent NASTRAN PSHELL panel. The rapid flutter prediction capability of ConceptFEA makes multidisciplinary collaborations between systems analysts and aeroelasticity experts feasible in practice

    The evaluation of pilots performance and mental workload by eye movement

    Get PDF
    Pilots make important decisions often using ambiguous information, while under stresses and with very little time. During flight operations detecting the warning light of system failure is a task with real-world application relates to measurement of pilot's performance and eye movement. The demand for a pilotā€™s visual and situational awareness in multiple tasks can be detrimental during pilotsā€™ mental overload conditions. The purpose of this research is to evaluate the relationship between pilotā€™s mental workload and operational performance by eye tracking. Collecting eye movement data during flight operations in a virtual reality of flight simulator provided useful information to analysis participantsā€™ cognitive processes. There were 36 pilots participated in this research, the experience of flight hours between 320 and 2,920, the range of age between 26 and 51 years old. The apparatus included Applied Science Laboratories (ASL) eye tracking, IDF flight simulator and NASA_TLX for data collection. The results show that pilots with high SA detecting hydraulic malfunction have shorter total fixation duration on Air Speed Indicator and longer total fixation duration on Altitude Indicator, Vertical Speed Indicator, Right multi-display and Left multi-display compared with pilots without detecting the signal of hydraulic malfunction. Pilotsā€™ total fixation time on Integration Control Panel, Altitude Indicator, Attitude Indicator and Right Multi-display, and pilotsā€™ subjective rating on NASA-TLX effort dimension for the mission of close pattern have significant relationship with pilotsā€™ performance on the operational time for completing the tactic mission. Experienced pilots operate aircraft familiar with monitoring Airspeed Indicator and kinetic maneuvering result in less fuel consumption. This study could provide guidelines for future training design to reduce pilots mental workload and improve situational awareness for enhancing flight safety

    Recovering Missing Coefficients in DCT-Transformed Images

    Full text link
    A general method for recovering missing DCT coefficients in DCT-transformed images is presented in this work. We model the DCT coefficients recovery problem as an optimization problem and recover all missing DCT coefficients via linear programming. The visual quality of the recovered image gradually decreases as the number of missing DCT coefficients increases. For some images, the quality is surprisingly good even when more than 10 most significant DCT coefficients are missing. When only the DC coefficient is missing, the proposed algorithm outperforms existing methods according to experimental results conducted on 200 test images. The proposed recovery method can be used for cryptanalysis of DCT based selective encryption schemes and other applications.Comment: 4 pages, 4 figure

    An Improved DC Recovery Method from AC Coefficients of DCT-Transformed Images

    Full text link
    Motivated by the work of Uehara et al. [1], an improved method to recover DC coefficients from AC coefficients of DCT-transformed images is investigated in this work, which finds applications in cryptanalysis of selective multimedia encryption. The proposed under/over-flow rate minimization (FRM) method employs an optimization process to get a statistically more accurate estimation of unknown DC coefficients, thus achieving a better recovery performance. It was shown by experimental results based on 200 test images that the proposed DC recovery method significantly improves the quality of most recovered images in terms of the PSNR values and several state-of-the-art objective image quality assessment (IQA) metrics such as SSIM and MS-SSIM.Comment: 6 pages, 6 figures, ICIP 201
    • ā€¦
    corecore