2,365 research outputs found

    Porcellio scaber algorithm (PSA) for solving constrained optimization problems

    Full text link
    In this paper, we extend a bio-inspired algorithm called the porcellio scaber algorithm (PSA) to solve constrained optimization problems, including a constrained mixed discrete-continuous nonlinear optimization problem. Our extensive experiment results based on benchmark optimization problems show that the PSA has a better performance than many existing methods or algorithms. The results indicate that the PSA is a promising algorithm for constrained optimization.Comment: 6 pages, 1 figur

    Nonlinear electromagnetic-thermal modeling using time domain finite element method in the machinery design

    Get PDF
    In this thesis, an electromagnetic-thermal co-simulation algorithm is developed for the three-dimensional modeling of electric machines. To couple electromagnetic (EM) and heat transfer processes, the time-domain finite element method is employed for its capability of modeling complex geometries. Losses generated from EM fields lead to temperature increase, while the temperature change, in turn, modifies material properties and thus affects EM field distribution. An efficient and accurate EM-thermal scheme is proposed to fully couple these two phenomena. Nonlinear magnetic problems arising from ferromagnetic materials are considered and solved by applying the Newton-Raphson method. For soft ferromagnetic materials, B-H curves are used to describe the permeability, and polynomial fitting is used to construct smooth curves from experimental data. To include the hysteresis phenomenon in hard ferromagnetic materials, the Jiles-Atherton (J-A) model is introduced to characterize the nonlinear property in which an ordinary differential equation (ODE) relates the magnetic flux density with its corresponding magnetic field. The classic Runge-Kutta method is adopted to accurately solve the ODE in the J-A model. EM and thermal variations have different timescales and the heat transfer process is far slower than electromagnetic variations. To enhance the simulation efficiency, different time-step sizes are applied. After each thermal time step, the material properties are first updated based on the temperature distribution and the EM problem is solved for several periods. When marching into the next thermal time step, the heat source is extrapolated from the EM losses to obtain the updated values, and the thermal system is solved again until a steady state is reached. Various numerical examples are presented to validate the implementation and demonstrate the accuracy, efficiency, and applications of the proposed numerical algorithms

    Characterization of carotid artery plaques using noninvasive vascular ultrasound elastography

    Full text link
    L'athĂ©rosclĂ©rose est une maladie vasculaire complexe qui affecte la paroi des artĂšres (par l'Ă©paississement) et les lumiĂšres (par la formation de plaques). La rupture d'une plaque de l'artĂšre carotide peut Ă©galement provoquer un accident vasculaire cĂ©rĂ©bral ischĂ©mique et des complications. Bien que plusieurs modalitĂ©s d'imagerie mĂ©dicale soient actuellement utilisĂ©es pour Ă©valuer la stabilitĂ© d'une plaque, elles prĂ©sentent des limitations telles que l'irradiation, les propriĂ©tĂ©s invasives, une faible disponibilitĂ© clinique et un coĂ»t Ă©levĂ©. L'Ă©chographie est une mĂ©thode d'imagerie sĂ»re qui permet une analyse en temps rĂ©el pour l'Ă©valuation des tissus biologiques. Il est intĂ©ressant et prometteur d’appliquer une Ă©chographie vasculaire pour le dĂ©pistage et le diagnostic prĂ©coces des plaques d’artĂšre carotide. Cependant, les ultrasons vasculaires actuels identifient uniquement la morphologie d'une plaque en termes de luminositĂ© d'Ă©cho ou l’impact de cette plaque sur les caractĂ©ristiques de l’écoulement sanguin, ce qui peut ne pas ĂȘtre suffisant pour diagnostiquer l’importance de la plaque. La technique d’élastographie vasculaire non-intrusive (« noninvasive vascular elastography (NIVE) ») a montrĂ© le potentiel de dĂ©termination de la stabilitĂ© d'une plaque. NIVE peut dĂ©terminer le champ de dĂ©formation de la paroi vasculaire en mouvement d’une artĂšre carotide provoquĂ© par la pulsation cardiaque naturelle. En raison des diffĂ©rences de module de Young entre les diffĂ©rents tissus des vaisseaux, diffĂ©rents composants d’une plaque devraient prĂ©senter diffĂ©rentes dĂ©formations, caractĂ©risant ainsi la stabilitĂ© de la plaque. Actuellement, les performances et l’efficacitĂ© numĂ©rique sous-optimales limitent l’acceptation clinique de NIVE en tant que mĂ©thode rapide et efficace pour le diagnostic prĂ©coce des plaques vulnĂ©rables. Par consĂ©quent, il est nĂ©cessaire de dĂ©velopper NIVE en tant qu’outil d’imagerie non invasif, rapide et Ă©conomique afin de mieux caractĂ©riser la vulnĂ©rabilitĂ© liĂ©e Ă  la plaque. La procĂ©dure Ă  suivre pour effectuer l’analyse NIVE consiste en des Ă©tapes de formation et de post-traitement d’images. Cette thĂšse vise Ă  amĂ©liorer systĂ©matiquement la prĂ©cision de ces deux aspects de NIVE afin de faciliter la prĂ©diction de la vulnĂ©rabilitĂ© de la plaque carotidienne. Le premier effort de cette thĂšse a Ă©tĂ© dĂ©diĂ© Ă  la formation d'images (Chapitre 5). L'imagerie par oscillations transversales a Ă©tĂ© introduite dans NIVE. Les performances de l’imagerie par oscillations transversales couplĂ©es Ă  deux estimateurs de contrainte fondĂ©s sur un modĂšle de dĂ©formation fine, soit l’ « affine phase-based estimator (APBE) » et le « Lagrangian speckle model estimator (LSME) », ont Ă©tĂ© Ă©valuĂ©es. Pour toutes les Ă©tudes de simulation et in vitro de ce travail, le LSME sans imagerie par oscillation transversale a surperformĂ© par rapport Ă  l'APBE avec imagerie par oscillations transversales. NĂ©anmoins, des estimations de contrainte principales comparables ou meilleures pourraient ĂȘtre obtenues avec le LSME en utilisant une imagerie par oscillations transversales dans le cas de structures tissulaires complexes et hĂ©tĂ©rogĂšnes. Lors de l'acquisition de signaux ultrasonores pour la formation d'images, des mouvements hors du plan perpendiculaire au plan de balayage bidimensionnel (2-D) existent. Le deuxiĂšme objectif de cette thĂšse Ă©tait d'Ă©valuer l'influence des mouvements hors plan sur les performances du NIVE 2-D (Chapitre 6). À cette fin, nous avons conçu un dispositif expĂ©rimental in vitro permettant de simuler des mouvements hors plan de 1 mm, 2 mm et 3 mm. Les rĂ©sultats in vitro ont montrĂ© plus d'artefacts d'estimation de contrainte pour le LSME avec des amplitudes croissantes de mouvements hors du plan principal de l’image. MalgrĂ© tout, nous avons nĂ©anmoins obtenu des estimations de dĂ©formations robustes avec un mouvement hors plan de 2.0 mm (coefficients de corrĂ©lation supĂ©rieurs Ă  0.85). Pour un jeu de donnĂ©es cliniques de 18 participants prĂ©sentant une stĂ©nose de l'artĂšre carotide, nous avons proposĂ© d'utiliser deux jeux de donnĂ©es d'analyses sur la mĂȘme plaque carotidienne, soit des images transversales et longitudinales, afin de dĂ©duire les mouvements hors plan (qui se sont avĂ©rĂ©s de 0.25 mm Ă  1.04 mm). Les rĂ©sultats cliniques ont montrĂ© que les estimations de dĂ©formations restaient reproductibles pour toutes les amplitudes de mouvement, puisque les coefficients de corrĂ©lation inter-images Ă©taient supĂ©rieurs Ă  0.70 et que les corrĂ©lations croisĂ©es normalisĂ©es entre les images radiofrĂ©quences Ă©taient supĂ©rieures Ă  0.93, ce qui a permis de dĂ©montrer une plus grande confiance lors de l'analyse de jeu de donnĂ©es cliniques de plaques carotides Ă  l'aide du LSME. Enfin, en ce qui concerne le post-traitement des images, les algorithmes NIVE doivent estimer les dĂ©formations des parois des vaisseaux Ă  partir d’images reconstituĂ©es dans le but d’identifier les tissus mous et durs. Ainsi, le dernier objectif de cette thĂšse Ă©tait de dĂ©velopper un algorithme d'estimation de contrainte avec une rĂ©solution de la taille d’un pixel ainsi qu'une efficacitĂ© de calcul Ă©levĂ©e pour l'amĂ©lioration de la prĂ©cision de NIVE (Chapitre 7). Nous avons proposĂ© un estimateur de dĂ©formation de modĂšle fragmentĂ© (SMSE) avec lequel le champ de dĂ©formation dense est paramĂ©trĂ© avec des descriptions de transformĂ©es en cosinus discret, gĂ©nĂ©rant ainsi des composantes de dĂ©formations affines (dĂ©formations axiales et latĂ©rales et en cisaillement) sans opĂ©ration mathĂ©matique de dĂ©rivĂ©es. En comparant avec le LSME, le SMSE a rĂ©duit les erreurs d'estimation lors des tests de simulations, ainsi que pour les mesures in vitro et in vivo. De plus, la faible mise en oeuvre de la mĂ©thode SMSE rĂ©duit de 4 Ă  25 fois le temps de traitement par rapport Ă  la mĂ©thode LSME pour les simulations, les Ă©tudes in vitro et in vivo, ce qui pourrait permettre une implĂ©mentation possible de NIVE en temps rĂ©el.Atherosclerosis is a complex vascular disease that affects artery walls (by thickening) and lumens (by plaque formation). The rupture of a carotid artery plaque may also induce ischemic stroke and complications. Despite the use of several medical imaging modalities to evaluate the stability of a plaque, they present limitations such as irradiation, invasive property, low clinical availability and high cost. Ultrasound is a safe imaging method with a real time capability for assessment of biological tissues. It is clinically used for early screening and diagnosis of carotid artery plaques. However, current vascular ultrasound technologies only identify the morphology of a plaque in terms of echo brightness or the impact of the vessel narrowing on flow properties, which may not be sufficient for optimum diagnosis. Noninvasive vascular elastography (NIVE) has been shown of interest for determining the stability of a plaque. Specifically, NIVE can determine the strain field of the moving vessel wall of a carotid artery caused by the natural cardiac pulsation. Due to Young’s modulus differences among different vessel tissues, different components of a plaque can be detected as they present different strains thereby potentially helping in characterizing the plaque stability. Currently, sub-optimum performance and computational efficiency limit the clinical acceptance of NIVE as a fast and efficient method for the early diagnosis of vulnerable plaques. Therefore, there is a need to further develop NIVE as a non-invasive, fast and low computational cost imaging tool to better characterize the plaque vulnerability. The procedure to perform NIVE analysis consists in image formation and image post-processing steps. This thesis aimed to systematically improve the accuracy of these two aspects of NIVE to facilitate predicting carotid plaque vulnerability. The first effort of this thesis has been targeted on improving the image formation (Chapter 5). Transverse oscillation beamforming was introduced into NIVE. The performance of transverse oscillation imaging coupled with two model-based strain estimators, the affine phase-based estimator (APBE) and the Lagrangian speckle model estimator (LSME), were evaluated. For all simulations and in vitro studies, the LSME without transverse oscillation imaging outperformed the APBE with transverse oscillation imaging. Nonetheless, comparable or better principal strain estimates could be obtained with the LSME using transverse oscillation imaging in the case of complex and heterogeneous tissue structures. During the acquisition of ultrasound signals for image formation, out-of-plane motions which are perpendicular to the two-dimensional (2-D) scan plane are existing. The second objective of this thesis was to evaluate the influence of out-of-plane motions on the performance of 2-D NIVE (Chapter 6). For this purpose, we designed an in vitro experimental setup to simulate out-of-plane motions of 1 mm, 2 mm and 3 mm. The in vitro results showed more strain estimation artifacts for the LSME with increasing magnitudes of out-of-plane motions. Even so, robust strain estimations were nevertheless obtained with 2.0 mm out-of-plane motion (correlation coefficients higher than 0.85). For a clinical dataset of 18 participants with carotid artery stenosis, we proposed to use two datasets of scans on the same carotid plaque, one cross-sectional and the other in a longitudinal view, to deduce the out-of-plane motions (estimated to be ranging from 0.25 mm to 1.04 mm). Clinical results showed that strain estimations remained reproducible for all motion magnitudes since inter-frame correlation coefficients were higher than 0.70, and normalized cross-correlations between radiofrequency images were above 0.93, which indicated that confident motion estimations can be obtained when analyzing clinical dataset of carotid plaques using the LSME. Finally, regarding the image post-processing component of NIVE algorithms to estimate strains of vessel walls from reconstructed images with the objective of identifying soft and hard tissues, we developed a strain estimation method with a pixel-wise resolution as well as a high computation efficiency for improving NIVE (Chapter 7). We proposed a sparse model strain estimator (SMSE) for which the dense strain field is parameterized with Discrete Cosine Transform descriptions, thereby deriving affine strain components (axial and lateral strains and shears) without mathematical derivative operations. Compared with the LSME, the SMSE reduced estimation errors in simulations, in vitro and in vivo tests. Moreover, the sparse implementation of the SMSE reduced the processing time by a factor of 4 to 25 compared with the LSME based on simulations, in vitro and in vivo results, which is suggesting a possible implementation of NIVE in real time

    First-principles LDA+U and GGA+U study of neptunium dioxide

    Full text link
    We have performed a systematic first-principles investigation to calculate the electronic structures, mechanical properties, and phonon dispersion curves of NpO2_{2}. The local density approximation+U+U and the generalized gradient approximation+U+U formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Np 5f5f electrons. By choosing the Hubbard \emph{U} parameter around 4 eV, the orbital occupancy characters of Np 5\emph{f} and O 2\emph{p} are in good agreement with recent experiments [J. Nucl. Mater. \textbf{389}, 470 (2009)]. Comparing with our previous study of ThO2_{2}, we note that stronger covalency exists in NpO2_{2} due to the more localization behavior of 5\emph{f} electrons of Np in line with the localization-delocalization trend exhibited by the actinides series.Comment: 7 pages, 6 figure
    • 

    corecore