198 research outputs found

    Economic outcomes of percutaneous coronary intervention with drug-eluting stents versus bypass surgery for patients with left main or three-vessel coronary artery disease: One-year results from the SYNTAX trial

    Get PDF
    Objectives: To evaluate the cost-effectiveness of alternative approaches to revascularization for patients with three-vessel or left main coronary artery disease (CAD). Background: Previous studies have demonstrated that, despite higher initial costs, long-term costs with bypass surgery (CABG) in multivessel CAD are similar to those for percutaneous coronary intervention (PCI). The impact of drug-eluting stents (DES) on these results is unknown. Methods: The SYNTAX trial randomized 1,800 patients with left main or three-vessel CAD to either CABG (n = 897) or PCI using paclitaxel-eluting stents (n = 903). Resource utilization data were collected prospectively for all patients, and cumulative 1-year costs were assessed from the perspective of the U.S. healthcare system. Results: Total costs for the initial hospitalization were 5,693/patienthigherwithCABG,whereasfollow−upcostswere5,693/patient higher with CABG, whereas follow-up costs were 2,282/patient higher with PCI due mainly to more frequent revascularization procedures and higher outpatient medication costs. Total 1-year costs were thus 3,590/patienthigherwithCABG,whilequality−adjustedlifeexpectancywasslightlyhigherwithPCI.AlthoughPCIwasaneconomicallydominantstrategyfortheoverallpopulation,cost−effectivenessvariedconsiderablyaccordingtoangiographiccomplexity.Forpatientswithhighangiographiccomplexity(SYNTAXscore>32),total1−yearcostsweresimilarforCABGandPCI,andtheincrementalcost−effectivenessratioforCABGwas3,590/patient higher with CABG, while quality-adjusted life expectancy was slightly higher with PCI. Although PCI was an economically dominant strategy for the overall population, cost-effectiveness varied considerably according to angiographic complexity. For patients with high angiographic complexity (SYNTAX score > 32), total 1-year costs were similar for CABG and PCI, and the incremental cost-effectiveness ratio for CABG was 43,486 per quality-adjusted life-year gained. Conclusions: Among patients with three-vessel or left main CAD, PCI is an economically attractive strategy over the first year for patients with low and moderate angiographic complexity, while CABG is favored among patients with high angiographic complexity

    Effects of Simulated Microgravity on Embryonic Stem Cells

    Get PDF
    There have been many studies on the biological effects of simulated microgravity (SMG) on differentiated cells or adult stem cells. However, there has been no systematic study on the effects of SMG on embryonic stem (ES) cells. In this study, we investigated various effects (including cell proliferation, cell cycle distribution, cell differentiation, cell adhesion, apoptosis, genomic integrity and DNA damage repair) of SMG on mouse embryonic stem (mES) cells. Mouse ES cells cultured under SMG condition had a significantly reduced total cell number compared with cells cultured under 1 g gravity (1G) condition. However, there was no significant difference in cell cycle distribution between SMG and 1G culture conditions, indicating that cell proliferation was not impaired significantly by SMG and was not a major factor contributing to the total cell number reduction. In contrast, a lower adhesion rate cultured under SMG condition contributed to the lower cell number in SMG. Our results also revealed that SMG alone could not induce DNA damage in mES cells while it could affect the repair of radiation-induced DNA lesions of mES cells. Taken together, mES cells were sensitive to SMG and the major alterations in cellular events were cell number expansion, adhesion rate decrease, increased apoptosis and delayed DNA repair progression, which are distinct from the responses of other types of cells to SMG

    Rational Design of a New Trypanosoma rangeli Trans-Sialidase for Efficient Sialylation of Glycans

    Get PDF
    This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been used to investigate the structural requirements for trans-sialidase activity. We observed that the T. cruzi trans-sialidase has a seven-amino-acid motif (197-203) at the border of the substrate binding cleft. The motif differs substantially in chemical properties and substitution probability from the homologous sialidase, and we hypothesised that this motif is important for trans-sialidase activity. The 197-203 motif is strongly positively charged with a marked change in hydrogen bond donor capacity as compared to the sialidase. To investigate the role of this motif, we expressed and characterised a T. rangeli sialidase mutant, Tr13. Conditions for efficient trans-sialylation were determined, and Tr13's acceptor specificity demonstrated promiscuity with respect to the acceptor molecule enabling sialylation of glycans containing terminal galactose and glucose and even monomers of glucose and fucose. Sialic acid is important in association with human milk oligosaccharides, and Tr13 was shown to sialylate a number of established and potential prebiotics. Initial evaluation of prebiotic potential using pure cultures demonstrated, albeit not selectively, growth of Bifidobacteria. Since the 197-203 motif stands out in the native trans-sialidase, is markedly different from the wild-type sialidase compared to previous mutants, and is shown here to confer efficient and broad trans-sialidase activity, we suggest that this motif can serve as a framework for future optimization of trans-sialylation towards prebiotic production

    Regeneration of Soft Tissues Is Promoted by MMP1 Treatment after Digit Amputation in Mice

    Get PDF
    The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice. © 2013 Mu et al

    Epidemiology of invasive group B streptococcal disease in infants from urban area of South China, 2011–2014

    Get PDF
    YesBackground: Group B Streptococcus (GBS) is a leading cause of morbidity and mortality in infants in both developed and developing countries. To our knowledge, only a few studies have been reported the clinical features, treatment and outcomes of the GBS disease in China. The severity of neonatal GBS disease in China remains unclear. Population-based surveillance in China is therefore required. Methods: We retrospectively collected data of <3 months old infants with culture-positive GBS in sterile samples from three large urban tertiary hospitals in South China from Jan 2011 to Dec 2014. The GBS isolates and their antibiotic susceptibility were routinely identified in clinical laboratories in participating hospitals. Serotyping and multi-locus sequence typing (MLST) were also conducted for further analysis of the neonatal GBS disease. Results: Total 70 cases of culture-confirmed invasive GBS infection were identified from 127,206 live births born in studying hospitals, giving an overall incidence of 0.55 per 1000 live births (95% confidence interval [CI] 0.44–0.69). They consisted of 49 with early-onset disease (EOD, 0.39 per 1000 live births (95% CI 0.29–0.51)) and 21 with late-onset disease (LOD, 0.17 per 1000 live births (95% CI 0.11–0.25)). The incidence of EOD increased significantly over the studying period. Five infants (4 EOD and 1 LOD) died before discharge giving a mortality rate of 7.1% and five infants (7.1%, 2 EOD and 3 LOD) had neurological sequelae. Within 68 GBS isolates from GBS cases who born in the studying hospitals or elsewhere, serotype III accounted for 77.9%, followed by Ib (14.7%), V (4.4%), and Ia (2.9%). MLST analysis revealed the presence of 13 different sequence types among the 68 GBS isolates and ST-17 was the most frequent sequence type (63.2%). All isolates were susceptible to penicillin, ceftriaxone, vancomycin and linezolid, while 57.4% and 51.5% were resistant to erythromycin and clindamycin, respectively. Conclusions: This study gains the insight into the spectrum of GBS infection in south China which will facilitate the development of the guidance for reasonable antibiotics usage and will provide evidence for the implementation of potential GBS vaccines in the future.Supported by medical and health science and technology projects of Health and Family Planning Commission of Guangzhou Municipality (grant number 20151A010034) and Guangdong provincial science and technology planning projects (grant number 2014A020212520)

    MicroRNAs Up-Regulated by CagA of Helicobacter pylori Induce Intestinal Metaplasia of Gastric Epithelial Cells

    Get PDF
    CagA of Helicobacter pylori is a bacterium-derived oncogenic protein closely associated with the development of gastric cancers. MicroRNAs (miRNAs) are a class of widespread non-coding RNAs, many of which are involved in cell growth, cell differentiation and tumorigenesis. The relationship between CagA protein and miRNAs is unclear. Using mammalian miRNA profile microarrays, we found that miRNA-584 and miRNA-1290 expression was up-regulated in CagA-transformed cells, miRNA-1290 was up-regulated in an Erk1/2-dependent manner, and miRNA-584 was activated by NF-κB. miRNA-584 sustained Erk1/2 activities through inhibition of PPP2a activities, and miRNA-1290 activated NF-κB by knockdown of NKRF. Foxa1 was revealed to be an important target of miRNA-584 and miRNA-1290. Knockdown of Foxa1 promoted the epithelial-mesenchymal transition significantly. Overexpression of miRNA-584 and miRNA-1290 induced intestinal metaplasia of gastric epithelial cells in knock-in mice. These results indicate that miRNA-584 and miRNA-1290 interfere with cell differentiation and remodel the tissues. Thus, the miRNA pathway is a new pathogenic mechanism of CagA

    Histo-Blood Group Gene Polymorphisms as Potential Genetic Modifiers of Infection and Cystic Fibrosis Lung Disease Severity

    Get PDF
    The pulmonary phenotype in cystic fibrosis (CF) is variable; thus, environmental and genetic factors likely contribute to clinical heterogeneity. We hypothesized that genetically determined ABO histo-blood group antigen (ABH) differences in glycosylation may lead to differences in microbial binding by airway mucus, and thus predispose to early lung infection and more severe lung disease in a subset of patients with CF. infection in the severe or mild groups. Multivariate analyses of other clinical phenotypes, including gender, asthma, and meconium ileus demonstrated no differences between groups based on ABH type. infection, nor was there any association with other clinical phenotypes in a group of 808 patients homozygous for the ΔF508 mutation

    Genome Sequence and Transcriptome Analysis of the Radioresistant Bacterium Deinococcus gobiensis: Insights into the Extreme Environmental Adaptations

    Get PDF
    The desert is an excellent model for studying evolution under extreme environments. We present here the complete genome and ultraviolet (UV) radiation-induced transcriptome of Deinococcus gobiensis I-0, which was isolated from the cold Gobi desert and shows higher tolerance to gamma radiation and UV light than all other known microorganisms. Nearly half of the genes in the genome encode proteins of unknown function, suggesting that the extreme resistance phenotype may be attributed to unknown genes and pathways. D. gobiensis also contains a surprisingly large number of horizontally acquired genes and predicted mobile elements of different classes, which is indicative of adaptation to extreme environments through genomic plasticity. High-resolution RNA-Seq transcriptome analyses indicated that 30 regulatory proteins, including several well-known regulators and uncharacterized protein kinases, and 13 noncoding RNAs were induced immediately after UV irradiation. Particularly interesting is the UV irradiation induction of the phrB and recB genes involved in photoreactivation and recombinational repair, respectively. These proteins likely include key players in the immediate global transcriptional response to UV irradiation. Our results help to explain the exceptional ability of D. gobiensis to withstand environmental extremes of the Gobi desert, and highlight the metabolic features of this organism that have biotechnological potential
    • …
    corecore