18 research outputs found

    Ranking Optimization with Constraints

    Get PDF
    ABSTRACT This paper addresses the problem of post-processing of ranking in search, referred to as post ranking. Although important, no research seems to have been conducted on the problem, particularly with a principled approach, and in practice ad-hoc ways of performing the task are being adopted. This paper formalizes the problem as constrained optimization in which the constraints represent the post-processing rules and the objective function represents the trade-off between adherence to the original ranking and satisfaction of the rules. The optimization amounts to refining the original ranking result based on the rules. We further propose a specific probabilistic implementation of the general formalization on the basis of the Bradley-Terry model, which is theoretically sound, effective, and efficient. Our experimental results, using benchmark datasets and enterprise search dataset, show that the proposed method works much better than several baseline methods of utilizing rules

    CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks

    Get PDF
    Previous works have validated that text generation APIs can be stolen through imitation attacks, causing IP violations. In order to protect the IP of text generation APIs, a recent work has introduced a watermarking algorithm and utilized the null-hypothesis test as a post-hoc ownership verification on the imitation models. However, we find that it is possible to detect those watermarks via sufficient statistics of the frequencies of candidate watermarking words. To address this drawback, in this paper, we propose a novel Conditional wATERmarking framework (CATER) for protecting the IP of text generation APIs. An optimization method is proposed to decide the watermarking rules that can minimize the distortion of overall word distributions while maximizing the change of conditional word selections. Theoretically, we prove that it is infeasible for even the savviest attacker (they know how CATER works) to reveal the used watermarks from a large pool of potential word pairs based on statistical inspection. Empirically, we observe that high-order conditions lead to an exponential growth of suspicious (unused) watermarks, making our crafted watermarks more stealthy. In addition, \cater can effectively identify the IP infringement under architectural mismatch and cross-domain imitation attacks, with negligible impairments on the generation quality of victim APIs. We envision our work as a milestone for stealthily protecting the IP of text generation APIs.Comment: accepted to NeurIPS 202

    Wound Segmentation with Dynamic Illumination Correction and Dual-view Semantic Fusion

    Full text link
    Wound image segmentation is a critical component for the clinical diagnosis and in-time treatment of wounds. Recently, deep learning has become the mainstream methodology for wound image segmentation. However, the pre-processing of the wound image, such as the illumination correction, is required before the training phase as the performance can be greatly improved. The correction procedure and the training of deep models are independent of each other, which leads to sub-optimal segmentation performance as the fixed illumination correction may not be suitable for all images. To address aforementioned issues, an end-to-end dual-view segmentation approach was proposed in this paper, by incorporating a learn-able illumination correction module into the deep segmentation models. The parameters of the module can be learned and updated during the training stage automatically, while the dual-view fusion can fully employ the features from both the raw images and the enhanced ones. To demonstrate the effectiveness and robustness of the proposed framework, the extensive experiments are conducted on the benchmark datasets. The encouraging results suggest that our framework can significantly improve the segmentation performance, compared to the state-of-the-art methods

    A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks

    No full text
    Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment

    Assessment of the Accuracy of the Saastamoinen Model and VMF1/VMF3 Mapping Functions with Respect to Ray-Tracing from Radiosonde Data in the Framework of GNSS Meteorology

    No full text
    In this paper, we assess, in the framework of Global Navigation Satellite System (GNSS) meteorology, the accuracy of GNSS propagation delays corresponding to the Saastamoinen zenith hydrostatic delay (ZHD) model and the Vienna Mapping function VMF1/VMF3 (hydrostatic and wet), with reference to radiosonde ray-tracing delays over a three-year period on 28 globally distributed sites. The results show that the Saastamoinen ZHD estimates have a mean root mean square (RMS) error of 1.7 mm with respect to the radiosonde. We also detected some seasonal signatures in these Saastamoinen ZHD estimates. This indicates that the Saastamoinen model, based on the hydrostatic assumption and the ground pressure, is insufficient to capture the full variability of the ZHD estimates over time with the accuracy needed for GNSS meteorology. Furthermore, we found that VMF3 slant hydrostatic delay (SHD) estimates outperform the corresponding VMF1 SHD estimates (equivalent SHD RMS error of 4.8 mm for VMF3 versus 7.1 mm for VMF1 at 5° elevation angle), with respect to the radiosonde SHD estimates. Unexpectedly, the situation is opposite for the VMF3 slant wet delay (SWD) estimates compared to VMF1 SWD estimates (equivalent SWD RMS error of 11.4 mm for VMF3 versus 7.0 mm for VMF1 at 5° elevation angle). Our general conclusion is that the joint approach using ZHD models and mapping functions must be revisited, at least in the framework of GNSS meteorology

    Prognostic value of high-frequency oscillations combined with multimodal imaging methods for epilepsy surgery

    No full text
    Abstract. Background:. The combination of high-frequency oscillations (HFOs) with single-mode imaging methods has been proved useful in identifying epileptogenic zones, whereas few studies have examined HFOs combined with multimodal imaging methods. The aim of this study was to evaluate the prognostic value of ripples, an HFO subtype with a frequency of 80 to 200 Hz is combined with multimodal imaging methods in predicting epilepsy surgery outcome. Methods:. HFOs were analyzed in 21 consecutive medically refractory epilepsy patients who underwent epilepsy surgery. All patients underwent positron emission tomography (PET) and deep electrode implantation for stereo-electroencephalography (SEEG); 11 patients underwent magnetoencephalography (MEG). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy in predicting surgical outcome were calculated for ripples combined with PET, MEG, both PET and MEG, and PET combined with MEG. Kaplan-Meier survival analyses were conducted in each group to estimate prognostic value. Results:. The study included 13 men and 8 women. Accuracy for ripples, PET, and MEG alone in predicting surgical outcome was 42.9%, 42.9%, and 81.8%, respectively. Accuracy for ripples combined with PET and MEG was the highest. Resection of regions identified by ripples, MEG dipoles, and combined PET findings was significantly associated with better surgical outcome (P < 0.05). Conclusions:. Intracranial electrodes are essential to detect regions which generate ripples and to remove these areas which indicate good surgical outcome for medically intractable epilepsy. With the assistance of presurgical noninvasive imaging examinations, PET and MEG, for example, the SEEG electrodes would identify epileptogenic regions more effectively
    corecore