
Ranking Optimization with Constraints

Fangzhao Wu†, Jun Xu‡∗, Hang Li‡, Xin Jiang‡

†Tsinghua National Laboratory for Information Science and Technology, Department of Electronic
Engineering, Tsinghua University, Beijing, China

‡Noah’s Ark Lab, Huawei Technologies Co. Ltd., Sha Tin, Hong Kong
wufangzhao@gmail.com, junxu@ict.ac.cn, {hangli.hl, jiang.xin}@huawei.com

ABSTRACT
This paper addresses the problem of post-processing of rank-
ing in search, referred to as post ranking. Although impor-
tant, no research seems to have been conducted on the prob-
lem, particularly with a principled approach, and in prac-
tice ad-hoc ways of performing the task are being adopted.
This paper formalizes the problem as constrained optimiza-
tion in which the constraints represent the post-processing
rules and the objective function represents the trade-off be-
tween adherence to the original ranking and satisfaction of
the rules. The optimization amounts to refining the origi-
nal ranking result based on the rules. We further propose a
specific probabilistic implementation of the general formal-
ization on the basis of the Bradley-Terry model, which is
theoretically sound, effective, and efficient. Our experimen-
tal results, using benchmark datasets and enterprise search
dataset, show that the proposed method works much better
than several baseline methods of utilizing rules.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models

Keywords
Post Ranking; Ranking Optimization; Bradley-Terry Model

1. INTRODUCTION
Recent years have observed a significant progress in re-

search and development on learning to rank, i.e., creation
of ranking models in search using machine learning tech-
niques. Now, it becomes a common practice to exploit the
learning technologies to construct the basic ranking model
of a search system. This paper is concerned with post pro-
cessing of ranking , which we call post ranking. Post ranking

∗Currently affiliated with Institute of Computing Technolo-
gy, Chinese Academy of Sciences.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 03 - 07, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2661895.

is normally conducted at web search engines in ad-hoc man-
ners. The paper aims to provide a principled approach to
post ranking, which does not seem to have been seriously
studied previously.

In practice, there are many situations in which one wants
to further ‘twist’ the search results given by the basic rank-
ing model, i.e., to conduct post ranking. Post ranking is
widely adopted in practice, under the names of re-ranking,
final ranking, etc. For example, the query is about a hot
topic and one wants to boost a webpage about the topic
from news channels to the top three positions, no matter
how the ranking model does (note that it is usually hard
to add such control into a learning to rank model). In an-
other example, a web page is reported to be likely a spam
page, and an immediate action is required to demote the
position of the page, without change of the ranking mod-
el. (See more examples in Section 3.) Post ranking needs
to be carried out not only from the viewpoint of enhancing
search quality, but also due to operational, commercial, and
even political reasons. There are other situations in which
post ranking appears to be necessary, such as diversification
of search result [6, 27, 7], context aware ranking [29], per-
sonalized ranking [25, 26, 23]. Therefore, post ranking is a
necessary and important process for search.

Post ranking has the following characteristics. (1) It is
usually query dependent, user dependent, or context depen-
dent. (2) The effects of it may not be achieved by using the
basic ranking model, because it is usually difficult, costly, or
even impossible to implement in the basic ranking model.
(3) It does not need learning or training.

The key challenge for post ranking lies in the difficulty of
formalizing the problem in a theoretically sound, effective,
and efficient way. The original search result might be very
different from the rules of post processing, and the rules
might also be contradictory to each other. Thus, it is not
easy to incorporate the complicated controls into a single
framework. Moreover, the process needs to be conducted
online and thus must be very efficient.

This paper proposes formalizing ranking optimization as a
constrained optimization problem. Given the ranking result
of a query by the ranking model, we perform re-ranking
on the result, by minimizing an objective function under a
number of constraints, where the constraints represent the
rules which we want to use for post processing, for example,
boost a page to the top k position, and the objective function
represents the trade-off between adherence to the original
ranking and satisfaction of the constraints.

As the first study, we propose a method for ranking opti-
mization. Our method adopts the Bradley-Terry model [2]
for calculating the probability of a ranking list. It realizes
the optimization problem as minimizing the negative log
conditional probability of the original ranking list and the
negative log conditional probability of the constraints giv-
en a Bradley-Terry model. The optimization problem has
a simple form and is guaranteed to have a global optimal
solution. Our method employs gradient decent to find the
optimal solution, with linear order time complexity. It is
thus a theoretically sound, effective, and efficient method.
We have conducted experiments using the LETOR bench-

mark datasets [14, 22] and a dataset from an enterprise
search engine. We take as baselines several methods which
adjust ranking results with heuristic rules. Experimental re-
sults indicate that our method consistently and significantly
outperform the baseline methods in terms of NDCG on all
datasets, indicating that it is better to employ our method
in post ranking.
The contributions of the paper include (1) formalization

of ranking optimization, (2) proposal of a method of ranking
optimization, (3) empirical study of ranking optimization.
The rest of the paper is organized as follows. After an in-

troduction to related work in Section 2, we describe the for-
mulation of ranking optimization with constraints in Section
3. We describe the proposed method based on Bradley-Terry
model in Section 4. Experimental results and discussions are
given in Section 5. Section 6 concludes this paper and gives
future work.

2. RELATED WORK
Construction of ranking model is one of the key problems

in IR. Given a query, the ranking model assigns relevance
scores to the retrieved documents and sorts the documents
based on the scores, and thus it plays an important role
in search. Traditionally, a ranking model is defined based
on a small number of factors, e.g., term frequency, inversed
document frequency, and document length. BM25 [24] and
LMIR (Language Models for Information Retrieval) [21, 12]
are such models. Recently, machine learning techniques are
applied to construction of ranking model usually using a
large number of features and a large amount labeled training
data, referred to as learning to rank. Methods of learning to
rank are categorized as ‘pointwise’ [18, 13], ‘pairwise’ [9, 8,
3, 4], and ‘listwise’ [5, 30, 31, 32, 28] methods, depending on
the loss functions used. In this paper, we adopt the listwise
method of LambdaMART [28] to train the basic ranking
model.
As explained above, basic ranking is not enough, and post

ranking is necessary in many cases. In practice, post ranking
is conducted by using heuristic rules, and there has not been
research on post ranking itself, as far as we know. There are
several other ranking issues, which can be addressed through
post ranking as well, such as search result diversification,
personalized ranking, and context aware ranking.
In recent years, search result diversification arises as a

hot topic in IR, in which the search system returns a list
of documents which are not only relevant to the query but
also cover many subtopics of the query. A common practice
for diversification is to see diversification as a post ranking
step after the ranking list based on relevance is created [6,
27, 7]. This is because it is usually hard to model relevance
and diversity in a single framework.

Personalized search may also be realized in post ranking,
for example, in what is called client side re-ranking [25, 26,
23]. Specifically, the ranking result by the basic ranking
model is sent to the client side and re-ranking of the result
based on the user’s interest is conducted. One advantage of
the approach is that re-ranking is carried out entirely on the
client side and the privacy of user can be protected.

Xiang et al. [29] have proposed context aware ranking.
For example, if the user has clicked a URL in the previous
search in the same session, then it is very likely she will not
click the same URL again when it appears in the result of
the current search. That means that ideally the URL should
be demoted in the current search result.

Probabilistic models for ranking have been studied in s-
tatistics and related fields from many years ago. The most
popular ones include Plackett-Luce model [20, 15], Mallows
model [16], and Bradley-Terry model [2, 10]. Plackett-Luce
model is a stagewise generative model, which decomposes
the process of generating a permutation of n objects into n
sequential stages. Mallows model is a distance-based model,
which defines the probability of a permutation according to
its distance to a centroid permutation. Bradley-Terry model
calculates the probability of a permutation by pairwise com-
parisons. See [17] for a review on the topic. The Plackett-
Luce model has been utilized in learning to rank [5], and the
Bradley-Terry model is utilized in ranking optimization in
this paper.

3. RANKING OPTIMIZATION WITH
CONSTRAINTS

Let us describe the process of post ranking. Given a query,
a ranking list of documents is first created by the basic rank-
ing model, presumably built by learning to rank. Post rank-
ing may be then conducted, depending on the query, user,
or context, which means a refinement of the original rank-
ing list, in which some documents are moved up and some
are moved down. The original ranking list is created mainly
from the viewpoint of relevance between query and docu-
ments. The refined ranking list is further created from the
viewpoint of quality, diversity, personalization, contextual-
ization, and so on.

The actions of post processing can be realized by using
heuristic rules, which is a common approach in practice. A
rule can be “if the query is in a list of terminologies, then
always have the Wikipedia page of the terminology on the
top one position”. Another rule can be“if the documents are
retrieved by both the original query and refined queries, then
have at least one document retrieved by the original query
ranked at the top three positions”(to reduce the risk of topic
shift). Yet another rule can be “if the query is ‘presidential
election debates’, then make all the top webpages of different
rounds of the debates grouped together in the ranking list”.

How to use rules for post ranking is not a trivial issue.
First, the rules may not be hard rules and they only rep-
resent a guideline for refining the initial ranking list. For
example, a rule may be “the document should be ranked at
top three positions”, in which no specific position is decided.
Second, multiple rules might be applied at the same time,
and the rules might be contradictory to each other. Third,
different orders of applications of rules might yield different
final ranking results and thus the order of applications needs
also be considered. Finally, the rules usually only affect a

Figure 1: Illustration of ranking optimization with
constraints.

small number of documents, it is important to make a bal-
ance between application of rules and preservation of the
original ranking list.
In this paper, we formalize post ranking as constrained

optimization, referred to as ranking optimization with con-
straints. The constraints represent the rules for post rank-
ing, defined as functions over sets of permutations. The ob-
jective function represents the trade-off between adherence
to the original ranking list and satisfaction of the constraints.
The constraints are in fact soft constraints in the formula-
tion. Post ranking is naturally performed by conducting the
optimization problem. Therefore, the issues described above
can all be naturally solved in the framework.
Suppose that σ denotes the original ranking list, C denotes

the set of constraints, and π denotes the final ranking list of
post ranking. The optimization can be written as follows

min
π∈ΩN

L(σ, π) + λ ·R(C, π), (1)

where L denotes agreement between σ and π, R denotes
satisfication of C by π, λ denotes the tradeoff coefficient,
and ΩN denotes the set of all permutations (ranking lists) on
the N documents in the current search. In the optimization
process, we need to find the optimal final ranking π∗.
Suppose the set of constraints C is defined as C = {ci(·)}, ci :

ΩN → {0, 1}. If ci(π) = 1, then permutation π violates con-
straint ci, otherwise, ci(π) = 0. The subset of permutations
which do not violate the constraints are good candidates for
the final ranking list.
We can define several types of constraints.

Top-k constraint: A document must be at top k positions.
Not-top-k constraint: A document cannot be at top k

positions.
Clustering constraint: Two or more documents should

be ranked together.
Diversity constraint: Two or more documents should not

be ranked together.
Figure 1 illustrates the problem of ranking optimization

with constraints (note that the figure is only for illustration
purposes; the set of permutations forms a discrete set, not a
Euclidean space.). ΩN is the set of all possible permutations
for N documents. ΩC is the subset of permutations satisfy-
ing the constraints in C. σ is the original permutation given
by the basic ranking model. In ranking optimization, we
aim to find the optimal permutation (ranking list) π∗ which
is as close to σ as possible and in the meantime as within
ΩC as possible.

4. OUR METHOD
In this section, we propose a method of ranking optimiza-

tion on the basis of the Bradley-Terry model. The method

only makes use of the top k constraint and the not top k
constraint. We leave to future work the study of adding
other constraints to the method.

4.1 Probabilistic Approach
We consider a probabilistic approach to ranking optimiza-

tion. We assume that there exists a probabilistic rank-
ing model M which gives rise to the ranking list π, by
π = argmaxτ P (τ |M) and we incorporate M into the opti-
mization problem (1) to obtain

min
π∈ΩN ,M

L(σ, π,M) + λ ·R(C, π,M).

That is to say, we turn the optimization problem (1) with re-
spect to π into an optimization problem with respect to both
π and M . Let L(σ, π,M) = − logP (σ|M) and R(C, π,M) =
− logP (C|M), where P (σ|M) is the probability of generat-
ing the permutation σ given M and P (C|M) is the proba-
bility of generating all of the constraints in C given M . We
first solve

min
M
− logP (σ|M)− λ · logP (C|M), (2)

and then solve

π∗ = arg max
π∈ΩN

P (π|M). (3)

where π∗ denotes the optimal ranking list.
The interpretation of the method is as follows. Given

the ranking list σ by the basic ranking model as well as
the set of constraints C, we want to first find a probability
model M that can best explain the ranking list as well as
the constraints (i.e., the product of the probabilities P (σ|M)
and P (C|M) is the largest, with a trade-off coefficient). After
M is determined, we want to find the best ranking list given
by M (i.e., the probability P (π|M) is the largest).

In this paper, we choose the Bradley-Terry model for cal-
culation of P (σ|M) and P (C|M).

4.2 Using Bradley-Terry Model
The Bradley-Terry model represents the probability dis-

tribution of permutation of N documents (in general items)
by making comparison among all pairs of documents. It as-
sumes that the ranking model M is parameterized with a
set of N scores Θ = (θ1, · · · , θN), each corresponding to a
document. Furthermore, the parameters are assumed to be
positive and sum to one, i.e., θi > 0 for i = 1, · · · , N and∑N

i=1 θi = 1. In Bradley-Terry model, the probability of a
preference pair (i, j) (document i be ranked higher than j)
is defined as

pij = P{(i, j)} = θi
θi + θj

.

Given the permutation σ, the Bradley-Terry model defines
the probability P (σ|M) as being proportional to the product
of probabilities of i ranked higher than j for all preference
pairs (i, j):

P (σ|M) ∝
∏

(i,j):σ(i)<σ(j)

pij =
∏

(i,j):σ(i)<σ(j)

θi
θi + θj

.

Given the constraint set C, the Bradley-Terry model de-
fines the probability P (C|M) based on the preference pairs
derived from C:

P (C|M) ∝
∏
c∈C

∏
(i,j)∈Pc

pij =
∏
c∈C

∏
(i,j)∈Pc

θi
θi + θj

,

where Pc is the set of preference pairs derived from the
constraint c.
The methods for deriving preference pairs depend on the

types of constraints. Here, we give methods for the top-
k constraint and not-top-k constraint. Given a top-k con-
straint c, the set of preference pairs Pc is defined as

Pc = {(i, j)|j : σ(j) > k},

where i is the document to promote in constraint c. Sim-
ilarly, Given a not-top-k constraint c, the set of preference
pairs is

Pc = {(j, i)|j : σ(j) ≤ k},

where i is the document to demote in constraint c. We note
that the top-k and not-top-k constraints can only be defined
on the original ranking list σ, because only after the ranking
list is given one can perform post ranking on it, i.e., impose
constraints on it. Thus, the top-k and not-top-k constraints
restrict the positions of a document in the original ranking σ.
Thus, the optimization in Equation (2) becomes

min
Θ

f(Θ) = −
∑

(i,j):σ(i)<σ(j)

log
θi

θi + θj
−
∑
c∈C

ρc ·
∑

(i,j)∈Pc

log
θi

θi + θj

subject to ∀i :θi > 0,

N∑
i=1

θi = 1,

(4)

where ρc > 0 is the weight for constraint c. Note that pa-
rameter λ in Equation (2) has been merged to parameters
ρc’s in Equation (4).
The final ranking π∗, then, can be obtained via the max-

imization in Equation (3). With the use of Bradley-Terry
model, it can be simplified to sorting of the documents in
descending order of scores in Θ.

4.3 Optimization
It is easy to demonstrate that f(Θ) = f(α · Θ) for any

α > 0 (note that log θi
θi+θj

= log αθi
αθi+αθj

). Thus we can

get rid of the constraint
∑N

i=1 θi = 1 in Equation (4). This
is because for any solution we can normalize the θi’s by
dividing them with

∑N
i=1 θi. The normalized solution will

satisfy the constraint and keep f unchanged.
Furthermore, the constraints of θi > 0 can be discard-

ed by replacing θi with esi for i = 1, · · · , N . Thus, the
optimization problem in (4) becomes the following uncon-
strained optimization problem:

min
S

f(S) =
∑

(i,j):σ(i)<σ(j)

(log(esi + esj)− si)

+
∑
c∈C

ρc ·
∑

(i,j)∈Pc

(log(esi + esj)− si)

 ,

(5)

where S = {s1, s2, · · · , sN} is the set of parameters. The
objective function f(S) in Equation (5) is convex, as stated
in Theorem 4.1.

Theorem 4.1. f(S) is a convex function.

Proof of the theorem can be found in Appendix. Theorem
4.1 indicates that the objective function f can be efficiently
optimized with gradient descent. The gradient w.r.t. S can

Algorithm 1 Ranking Optimization Algorithm

Require: Initial ranking σ, constraints C, and shrinkage
rate 0 < α < 1

1: S(0) ← random values
2: t← 1
3: repeat
4: ∇S = ∂f

∂S

∣∣
S=S(t−1) {Equation (6)}

5: γ ← 1
{search optimal step size using backtracking}

6: while f(S(t−1) − γ∇S) > f(S(t−1))− γ
2
∥ ∇S ∥2 do

7: γ ← αγ
8: end while
9: S(t) ← S(t−1) − γ∇S {Equation (7)}
10: t← t+ 1
11: until convergence
12: return Θ = { e

s1

Z
, · · · , esN

Z
}, where Z =

∑N
n=1 e

sn

be written as ∂f
∂S = { df

ds1
, · · · , df

dsN
}, where df

dsi
is defined as

df

dsi
=

 ∑
j:σ(j)<σ(i)

esi

esi + esj
−

∑
j:σ(i)<σ(j)

esj

esi + esj

+
∑
c∈C

ρc

 ∑
j:(j,i)∈Pc

esi

esi + esj
−

∑
j:(i,j)∈Pc

esj

esi + esj

 .

(6)

Thus, the updating criterion for gradient descent is

S(t) = S(t−1) − γ(t) ∂f

∂S

∣∣∣∣
S=St−1

, (7)

where t is the iteration number, γ(t) is the optimal step size
at the i-th iteration which is determined by backtracking.
Algorithm 1 shows the pseudo code of the optimization al-
gorithm.

The final document ranking π∗, then, is obtained by sort-
ing with the scores in Θ returned in Algorithm 1.

4.4 Analysis

4.4.1 Convergence
We analyze the convergency of Algorithm 1 and have the

following theorem:

Theorem 4.2. Algorithm 1 converges in finite steps and
the convergence rate is O(1

ϵ
), where ϵ > 0 is the tolerance.

Proof of the theorem can be found in Appendix. Theorem
4.2 implies that Algorithm 1 can return an optimal ranking
model in a reasonably short time, which makes it possible
to apply the algorithm online.

4.4.2 Intuitive Explanation
The gradient in Equation (6) has an intuitive explanation.

The gradient consists of two parts, one based on the original
ranking list σ and the other based on the constraint set C.
Both parts contribute to the gradient and are calculated on
the basis of preference pairs.

Given a preference pair (i, j), there will be a force that
pushes the preferred document i upward, by subtracting a

positive term e
sj

esi+e
sj = 1

e
si−sj+1

to the gradient df
dsi

(note

that in gradient descent si is updated with negative gradi-
ent). The term also indicates that the force is related to the

j i

Figure 2: Intuitive explanation of the gradient.
Given a preference pair (i, j), document i will be
pushed upward (green solid arrow) and document j
will be pushed downward (red dashed arrow). The
strengths of the forces are identical.

Table 1: Statistics of datasets.
dataset # queries #documents #relevance levels

MQ2007 1692 69623 3
MQ2008 784 15211 3
OHSUMED 106 16140 3
.Gov 50 49058 2
Enterprise 183 5464 3

difference between the scores. A small si − sj , which means
the current scores si and sj do not agree with the prefer-
ence pair, leads to a strong force to promote document i. In
the same time, the un-preferred document j will be pushed
downward, by adding the same term to gradient df

dsj
. Figure

2 illustrates the forces that respectively push the document
i and document j upward and downward.
Given all of the preference pairs derived from σ and from
C, the overall forces that promote (or demote) a document i
are jointly determined by all the preference pairs related to
document i.

5. EXPERIMENTS
We conducted experiments to test the performances of our

method for post ranking (ranking optimization).

5.1 Experiment Setting
We know of no existence of public data available for post

ranking. As approximation, we used relevance datasets for
the experiments. That is, we assume that we know that
some documents are relevant (i.e., should be ranked high)
and boost the ranks of the documents in post ranking.
We made use of the following subsets of the LETOR bench-

mark dataset: MQ2007, MQ2008, OHSUMED and .Gov, as
well as a dataset of enterprise search, denoted as Enterprise.
Table 1 gives the statistics of the four LETOR datasets [14,
22] and the Enterprise dataset.
The Enterprise dataset consists of 183 queries; each query

is associated with about 30 documents. In total, the dataset
contains 5464 query-document pairs. Each query-document
pair is assigned with a label representing relevance at three
levels: Good, Fair, or Bad. The dataset is split into training
data (130 queries) and test data (53 queries).
The ranking models were trained using LambdaMART [28],

which is a state-of-the-art method in learning to rank. The
standard features in LETOR datasets were utilized and we
also defined 18 features for Enterprise, including BM25 [24]
and word level edit distance1, etc.
Two types of constraints were tested in our experiments:

the top-k constraints and not-top-k constraints. For each
test query, we generated one top-k (k = 1, 3, 5) constraint
and one not-top-k (k = 5, 10) constraint based on the labels

1http://en.wikipedia.org/wiki/Edit distance

of documents with respect to the query2. Specifically, we
sorted the documents according to their labels (to obtain a
perfect ranking) and randomly selected one document i from
the top k positions. Then we created a constraint c which
states that the selected document i should be ranked to top
k positions in the final ranking. Similarly, we also created a
not-top-k constraint by randomly select a document j from
positions after k in the perfect ranking.

For simplicity, we assumed that all top-k (and all not-top-
k) constraints are equally important and take the values of
ρt (and ρn). Thus, the ranking optimization of Equation (5)
becomes

min
S

f(S) =
∑

(i,j):σ(i)<σ(j)

(log(esi + esj)− si)

+ρt
∑

(i,j)∈Pt

(log(esi + esj)− si)

+ρn
∑

(i,j)∈Pn

(log(esi + esj)− si) .

(8)

As for baseline methods, we use the following four heuris-
tics for modifying the original ranking:
Radical For the top-k constraint, Radical always ranks the

selected document to top one position. For the not-
top-k constraint, it always ranks the selected document
to the bottom position of the list.

Moderate For the top-k constraint, Moderate always ranks
the selected document to the middle of the top k po-
sitions. For the not-top-k constraint, it always ranks
the selected document to the middle of the remaining
list after k.

Conservative For the top-k constraint, Conservative al-
ways ranks the document to the position of k. For
the not-top-k constraint, Conservative always ranks
the document to the position of k + 1.

Proportional The above three baselines do not consider
the position of the document in the original list. Pro-
portional promotes the document selected by the top-k
constraint to the position of ⌈k× pos

N
⌉, where pos is the

rank of the document in the original ranking list and
⌈·⌉ is the ceiling function. Therefore, the documen-
t will be ranked higher if its original position is also
high. Similarly, the baseline demotes the document s-
elected by the not-top-k constraint to the position of
⌈k + pos(1− k

N
)⌉.

As evaluation measures, Normalized Discounted Cumula-
tive Gain (NDCG) [11] at positions 1, 3, and 5 were used.

5.2 Experimental Results

5.2.1 Results on LETOR
In all the four datasets in LETOR, the queries and as-

sociated documents were split to 5 subsets, and 5-fold cross
validations were conducted. The performances reported here
are the averages over 5 trials.

For each dataset, we used the training data to learn the
basic ranking model, the validation data to tune the param-
eters, and the test data to perform ranking optimization.
There are two parameters ρt and ρn tuned with the validate

2Ranking optimization can be conducted or not conducted
depending on queries. Here for experimentation purpose,
ranking optimization is assumed to be carried out for all
queries.

NDCG@1 NDCG@3 NDCG@5
0.3

0.35

0.4

0.45

0.5

0.55

0.6

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(a) top-3, not-top-5, ρt=10, ρn=0

NDCG@1 NDCG@3 NDCG@5
0.3

0.35

0.4

0.45

0.5

0.55

0.6

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(b) top-3, not-top-10, ρt=10, ρn=10

NDCG@1 NDCG@3 NDCG@5
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(c) top-5, not-top-10, ρt=10, ρn=10

Figure 3: Ranking accuracies on MQ2008 dataset.

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(a) top-3, not-top-5, ρt=100, ρn=10

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(b) top-3, not-top-10, ρt=100, ρn=10

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(c) top-5, not-top-10, ρt=100, ρn=10

Figure 4: Ranking accuracies on MQ2007 dataset.

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(a) top-3, not-top-5, ρt=200, ρn=0

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(b) top-3, not-top-10, ρt=200, ρn=10

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(c) top-5, not-top-10, ρt=200, ρn=30

Figure 5: Ranking accuracies on OHSUMED dataset.

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(a) top-3, not-top-5, ρt=50, ρn=50

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(b) top-3, not-top-10, ρt=50, ρn=50

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(c) top-5, not-top-10, ρt=50, ρn=50

Figure 6: Ranking accuracies on .Gov dataset.

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(a) top-3, not-top-5, ρt=60, ρn=40

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(b) top-3, not-top-10, ρt=60, ρn=40

NDCG@1 NDCG@3 NDCG@5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LambdaMART
RankOpt
Radical
Moderate
Conservative
Proportional

(c) top-5, not-top-10, ρt=60, ρn=40

Figure 7: Ranking accuracies on Enterprise dataset.

Table 2: Average time (in milliseconds) of ranking
optimization in setting of (top-5, not-top-10).

MQ2008 MQ2007 OHSUMED .Gov Enterprise
time 4.24 6.85 134.53 70.06 6.45

set. The performances on the test sets are those based on
the best performing parameters.
We tested all the six combinations of top-k constrain-

t (k = 1, 3, 5) and not-top-k constraint (k = 5, 10) on all
of the four datasets. Figures 3, 4, 5, and 6 report the ex-
perimental results on MQ2008, MQ2007, OHSUMED, and
.Gov, respectively. Our ranking optimization method is de-
noted as ‘RankOpt’ in the figures. The best performing
parameters of ρt and ρn are also shown. The performances
of the combinations (top-3, not-top-5), (top-3, not-top-10),
and (top-5, not-top-10) are reported.
From the results, we can see that our method outperforms

the baselines as well as the basic ranking model of Lamb-
daMART on all datasets. The experimental results for (top-
3, not-top-5) and (top-3, not-top-10) are very similar. This
is because all the methods focus on the top of ranking list.
The changes of k on the not-top-k constraint have less im-
pact on the final ranking list. Our method and the baselines
perform equally well, when k is 1 for the top-k constrain-
t. This is because the top-1 constraint means promoting
the document to the top one position, and our method can
function as a hard rule in such case and produce the same
ranking result as the baselines (we omit the result because
of space limitation). We will have discussions on the effect
of different k values in Section 5.3.
We conducted significant tests (t-test) on the improve-

ments of our method over all the baselines. The results in-
dicate that all the improvements are statistically significant
(p-value < 0.05), except (top-5, not-top-10) over ‘Propor-
tional’ on MQ2008 in terms of NDCG@5, (top-3, not-top-5)
and (top-3, not-top-10) over ‘Radical’ on OHSUMED and
.Gov in terms of NDCG@3 and NDCG@5. Note that when
top-1 constraint is adopted, our method performs equally
well with the baselines.
Table 2 reports average running time of ranking optimiza-

tion by our method (with top-5 and not-top-10 constraints)
in milliseconds on a Laptop PC with 2.4GHZ CPU and 4G-
B memory. We can see that our method runs very fast,
even on an unpowerful machine. We also observed that for
most queries the algorithm converges within 10 iterations.

Similar experimental results were also observed in other ex-
periments. The results empirically verify the conclusion of
Theorem 4.2.

5.2.2 Results on Enterprise
In the experiment, we utilized the training data to learn

the basic ranking model and to tune the parameters ρt and
ρn. The test data was utilized to perform ranking optimiza-
tion. We tested all the six combinations of top-k constraint
(k = 1, 3, 5) and not-top-k constraint (k = 5, 10) on the
Enterprise dataset. The performances of the combination-
s (top-3, not-top-5), (top-3, not-top-10), and (top-5, not-
top-10) are reported in Figure 8. Our ranking optimization
method is denoted as ‘RankOpt’ in the figures. From the
results, we can see that our method outperforms the base-
lines as well as the basic ranking model of LambdaMART on
all datasets. The experimental results for (top-3, not-top-5)
and (top-3, not-top-10) are very similar, as in the exper-
iments on LETOR datasets. We conducted t-test on the
improvements of our method over the baselines in terms of
NDCG@1, NDCG@3 and NDCG@5. The improvements are
statistically significant. Again, our method and the baselines
perform equally well when the top-1 constraint is adopted.
We omit the result because of space limitation.

We also tested the running time of our method of ranking
optimization, in the setting of top-5 and not-top-10 con-
straints. The last column of Table 2 reports average time
of our method in milliseconds. We can see that our method
runs very fast. Similar experimental results were obtained
for other combinations of top-k and not-top-k constraints.

5.3 Discussions
We first investigated the reasons that our method of rank-

ing optimization outperforms the baseline methods. We
found that in general our method can really work better
than the baselines to make a good comprise between using
the original ranking and using the constraints.

Here, we use the result of MQ2008 dataset with regard
to two queries to illustrate why our method is superior to
the baselines. Figure 8(a) shows the original ranking by
LambdaMART and the final rankings by different methods
with regard to one query. The empty blocks, grid blocks,
and filled blocks represent not relevant documents, partially
relevant documents, and relevant documents, respectively.
The documents selected by top-k constraints and not-top-k
constraints are marked with ‘t’ and ‘n’, respectively. From
the results, we can see that our method of ranking optimiza-

tn

t n

LambdaMART

RankOpt

Radical

Moderate

Conservative t n

t n

t n

Proportional t n

(a) Example 1

n

t n

t

t

t n

LambdaMART

RankOpt

Radical

Moderate

Conservative

t

n

n

t nProportional

(b) Example 2

Figure 8: Example rankings from MQ2008.

tion can really promote the relevant document (marked with
‘t’) and demote the not relevant documents (marked with
‘n’). In this case, our method outperforms the baselines of
Moderate, Conservative, and Proportional. The results with
regard to the other query are reported in Figure 8(b), which
is a noisy case in which the document selected by the top-k
constraint is actually not relevant (noises may also exist in
the rules in practice). Our method of ranking optimization
also takes into account the position of the document in the
original ranking list given by LambdaMART and thus does
not promote it too much. In other words, our method can
make a good trade-off between the constraints and the orig-
inal ranking. On the other hand, the baselines of Radical
and Moderate do not have such consideration and cannot
rank the document satisfactorily. Therefore, our method is
more capable for post ranking than the baselines.
We further conducted experiments to see the impact of

different k values on different methods. For the top-k con-
straint, larger k means a softer control on the final rank-
ing list. When k = 1, the constraint becomes a hard rule.
From the results reported in Figure 9(a), we can see that our
method of ranking optimization always works better than or
as well as the baselines for all k values. When k gets close
to one, our method will perform similarly as the baselines;
when k gets larger, the improvements of our method over the
baselines will also be larger. The results indicate that our
method is more robust than the baselines. We also note that
the baseline of Radical hurts the basic ranking results when
k gets large. This is because Radical is very sensitive to the
noise in the constraints (rules). The results indicate that it
is risky to directly apply Radical to post ranking though it
outperforms the other baselines in most of the experiments.
On the other hand, for the not-top-k constraint, smaller

k means a softer control on the final ranking list. When
k = N−1, the constraint becomes a hard rule. From the re-
sults reported in Figure 9(b), we can see that our method of
ranking optimization always works better than or as well as
the baselines for all k values. When k gets close to one, our
method will perform similarly as the baselines, because the
not-top-k constraint has a soft control on the final ranking
list. When k gets larger, the improvements of our method
over the baselines will also become larger. There is a peak

1 2 3 4 5 6 7 8 9 10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

k

RankOpt

Radical

Moderate

Conservative

Proportional

LambdaMART

(a) Top-k constraint

1 2 3 4 5 6 7 8 9 10

0.37

0.38

0.39

0.4

0.41

0.42

k

RankOpt

Radical

Moderate

Conservative

Proportional

LambdaMART

(b) Not-top-k constraint

Figure 9: Performances of ranking optimization
with respect to different k values in terms of
NDCG@1.

for performance of our method around k = 5. The perfor-
mance will drop after k = 5. This is because the not-top-k
constraint impacts more on the tail of the ranking list, and
a larger k will have less impact on the top of the ranking
list, which is more important in ranking evaluation.

We also investigated the influence of different types of con-
straints. Specifically, we tested performances of our method
of rank optimization without the constraints (LambdaMART
only), with top-5 constraint only, with not-top-10 constraint
only, and with both types of constraints. Figure 10 reports
the results. From the figure we can see that the two type-
s of constraints can individually improve the ranking per-
formances if they are adopted. The performances can be
further improved if they are used simultaneously. The re-
sults indicate that our method of ranking optimization can
leverage multiple types of constraints within one framework.
The top-5 constraint outperforms the not-top-10 constraint,
because the evaluation measure of NDCG emphasizes the
importance of top ranking, which is also the focus of the
top-k-constraint.

Finally, we evaluated how sensitive our method of ranking
optimization is to the parameter settings. In the experiment,
two parameters ρt and ρn were tested, which are weights of
the top-k constraint and not-top-K constraint, respectively.

NDCG@1 NDCG@3 NDCG@5
0.2

0.25

0.3

0.35

0.4

0.45

0.5

LambdaMART
Only top k
Only not top k
Both

Figure 10: Performances of ranking optimization
with different constraint types.

0 5 10 15 20

0.38

0.4

0.42

0.44

0.46

0.48

N
D

C
G

weight

NDCG@1
NDCG@3
NDCG@5

(a) ρt

0 5 10 15 20 25 30
0.36

0.38

0.4

0.42

0.44

0.46

0.48

N
D

C
G

weight

NDCG@1
NDCG@3
NDCG@5

(b) ρn

Figure 11: Performances of ranking optimization
with respect to different parameter settings.

We changed one parameter and fixed the other to its optimal
value. Figure 11(a) and Figure 11(b) show the performances
of ranking optimization of our method in terms of NDCG
at the positions of 1, 3, and 5. From the results, we can see
that our method is not sensitive to the parameter settings,
and thus is quite robust.

6. CONCLUSION
In this paper, we have studied the problem of post pro-

cessing of ranking in search, which we call post ranking.
Practices on post ranking in reality tend to be heuristic and
we have, perhaps for the first time, formalized the problem
as an optimization problem. In the formulation, we repre-
sent the post processing rules as constraints and manage to
minimize the objective function denoting the trade-off be-
tween the original ranking and the constraints. As a result,
one can perform post ranking through solving the optimiza-
tion issue.

We have also given a specific probabilistic implementa-
tion of the optimization formulation. Bartley-Terry model
is employed to calculating the probability of ranking list.
The objective function is defined based on the conditional
probability of the original ranking and the conditional prob-
ability of the constraints given the model. The optimiza-
tion amounts to minimization of the sum of the negative log
probabilities.

We have compared the performances of our method with
several baselines in experiments using a number of datasets
including benchmark datasets. The baseline methods repre-
sent practical methods of using rules. The results show that
it is always better to employ our method in post ranking
than the baselines.

There are still many open questions with regard to rank-
ing optimization. We plan to conduct more research on
the problem in the future. The open questions include (1)
whether there exists a more general framework for ranking
optimization, (2) how to define and incorporate other type-
s of constraints into the framework, (3) how to naturally
add diversification of results, etc. into the framework, (4)
whether there are more effective and efficient methods for
the task.

7. REFERENCES
[1] S. Boyd and L. Vandenberghe. Convex Optimization.

Cambridge University Press, New York, USA, 2004.

[2] R. A. Bradley and M. E. Terry. The rank analysis of
incomplete block designs — I. The method of paired
comparisons. Biometrika, 39:324–345, 1952.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proceedings of the
22Nd International Conference on Machine Learning,
ICML ’05, pages 89–96, 2005.

[4] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W.
Hon. Adapting ranking svm to document retrieval. In
Proceedings of the 29th Annual International ACM
SIGIR Conference, SIGIR ’06, pages 186–193, 2006.

[5] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In ICML ’07: Proceedings of the 24th
international conference on Machine learning, pages
129–136, 2007.

[6] J. Carbonell and J. Goldstein. The use of mmr,
diversity-based reranking for reordering documents
and producing summaries. In Proceedings of the 21st
Annual International ACM SIGIR Conference, SIGIR
’98, pages 335–336, 1998.

[7] Z. Dou, S. Hu, K. Chen, R. Song, and J.-R. Wen.
Multi-dimensional search result diversification. In

Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining, WSDM
’11, pages 475–484, 2011.

[8] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
J. Mach. Learn. Res., 4:933–969, Dec. 2003.

[9] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. In
Advances in Large Margin Classifiers, pages 115–132,
Cambridge, MA, 2000. MIT Press.

[10] R. Hunter. Mm algorithms for generalized
bradley-terry models. The Annals of Statistics,
32:2004, 2004.

[11] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, Oct. 2002.

[12] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In Proceedings of the 24th Annual
International ACM SIGIR Conference, SIGIR ’01,
pages 111–119, 2001.

[13] P. Li, C. J. C. Burges, and Q. Wu. Mcrank: Learning
to rank using multiple classification and gradient
boosting. In NIPS, 2007.

[14] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor:
Benchmark dataset for research on learning to rank
for information retrieval. In Proceedings of SIGIR
2007 workshop on learning to rank for information
retrieval, pages 3–10, 2007.

[15] R. D. Luce. Individual Choice Behavior: A theoretical
analysis. Wiley, 1959.

[16] C. L. Mallows. Non-null ranking models. i.
Biometrika, 44(1-2):114–130, June 1957.

[17] J. I. Marden. Analyzing and Modeling Rank Data.
Chapman & Hall, 1995.

[18] R. Nallapati. Discriminative models for information
retrieval. In Proceedings of the 27th Annual
International ACM SIGIR Conference, SIGIR ’04,
pages 64–71, 2004.

[19] Y. Nesterov and I. Nesterov. Introductory Lectures on
Convex Optimization: A Basic Course. Applied
Optimization. Springer, 2004.

[20] R. L. Placket. The analysis of permutations. Applied
Statistics, 24:193–202, 1975.

[21] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of
the 21st Annual International ACM SIGIR
Conference, SIGIR ’98, pages 275–281, 1998.

[22] T. Qin, T.-Y. Liu, J. Xu, and H. Li. Letor: A
benchmark collection for research on learning to rank
for information retrieval. Inf. Retr., 13(4):346–374,
Aug. 2010.

[23] F. Radlinski and S. Dumais. Improving personalized
web search using result diversification. In Proceedings
of the 29th Annual International ACM SIGIR
Conference, SIGIR ’06, pages 691–692, 2006.

[24] S. Robertson and D. A. Hull. The trec-9 filtering track
final report. pages 25–40, 2000.

[25] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive
web search based on user profile constructed without
any effort from users. In Proceedings of the 13th

International Conference on World Wide Web, pages
675–684, 2004.

[26] J. Teevan, S. T. Dumais, and E. Horvitz.
Personalizing search via automated analysis of
interests and activities. In Proceedings of the 28th
Annual International ACM SIGIR Conference, SIGIR
’05, pages 449–456, 2005.

[27] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat,
and S. Yahia. Efficient computation of diverse query
results. In IEEE 24th International Conference on
Data Engineering, pages 228–236, 2008.

[28] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao.
Adapting boosting for information retrieval measures.
Inf. Retr., 13(3):254–270, June 2010.

[29] B. Xiang, D. Jiang, J. Pei, X. Sun, E. Chen, and
H. Li. Context-aware ranking in web search. In
Proceedings of the 33rd International ACM SIGIR
Conference, SIGIR ’10, pages 451–458, 2010.

[30] J. Xu and H. Li. Adarank: A boosting algorithm for
information retrieval. In Proceedings of the 30th
Annual International ACM SIGIR Conference, SIGIR
’07, pages 391–398, 2007.

[31] J. Xu, T.-Y. Liu, M. Lu, H. Li, and W.-Y. Ma.
Directly optimizing evaluation measures in learning to
rank. In Proceedings of the 31st Annual International
ACM SIGIR Conference, SIGIR ’08, pages 107–114,
2008.

[32] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In Proceedings of the 30th Annual
International ACM SIGIR Conference, SIGIR ’07,
pages 271–278, 2007.

Appendix
Proof of Theorem 4.1.

Proof. The objective function f can be decomposed as
f = fa − fb, where fa =

∑
(i,j)∈P a(i,j) · log(esi + esj) and

fb =
∑N

i=1 bi·si. Here a(i,j) ≥ 0 for all (i, j) pairs in P, which
is the union of all preference pairs. bi ≥ 0 for i = 1, · · · , N .

esi is a log-convex function w.r.t si. Thus, log(esi + esj)
is also convex for any (i, j) ∈ P, because log-convexity can
be persevered under addition (cf., [1]). Hence, fa is convex
because a(i,j) ≥ 0 holds for all (i, j) ∈ P.

Finally, we conclude that f = fa − fb is convex because
fb is linear.

Proof of Theorem 4.2.

Proof. Since si < log(esi + esj) holds for any preference
pair (i, j), obviously the objective function f in Equation (5)
has a lower bound of 0. Also, according to Theorem 4.1, f is
convex. Thus, there exits one and only one optimal solution
for the problem of Equation (5), denoted as S∗.

Since gradient descent and backtracking are adopted for
the optimization, the following inequality holds (cf., [19]):

f(S(t))− f(S∗) ≤ ∥S
(0) − S∗∥2

2ηmint
,

where t is the number of iterations, ηmin = min{1, α/L},
L is Lipschitz constant for f , and α is the shrinkage rate.
Thus, Algorithm 1 can converge within O(1

ϵ
) to reach the

tolerance ϵ.

