36,235 research outputs found

    Proton decay suppression in a supersymmetric SO(10) model

    Get PDF
    We propose a mechanism for sufficient suppression of dimension-5 operators for proton decay in a supersymmetric SO(10) model. This mechanism is analogue to the double seesaw mechanism in studying neutrino masses. Only an intermediate VEV instead of an intermediate scale is required so that gauge coupling unification is maintained. The VEV is generated by introducing an anomalous U(1) symmetry whose breaking is at higher scale. The proton decay amplitudes are suppressed by this VEV over the GUT scale. We use 45+54\textbf{45+54} in breaking GUT symmetry. 120\textbf{120} is included so that fermion sector is fully realistic. Assuming a minimal fine-tuning in the Higgs doublet sector, tanβ\textrm{tan}\beta of order one is predicted.Comment: Several small corrections, 13 pages, no figur

    Optimal Quantization in Energy-Constrained Sensor Networks under Imperfect Transmission

    Get PDF
    This paper addresses the optimization of quantization at local sensors under strict energy constraint and imperfect transmission to improve the reconstruction performance at the fusion center in the wireless sensor networks (WSNs). We present optimized quantization scheme including the optimal quantization bit rate and the optimal transmission power allocation among quantization bits for BPSK signal and binary orthogonal signal with envelope detection, respectively. The optimization of the quantization is formulated as a convex problem and the optimal solution is derived analytically in both cases. Simulation results demonstrate the effectiveness of our proposed quantization schemes

    Proton decay in a supersymmetric SO(10) model with missing partner mechanism

    Get PDF
    The extended supersymmetric SO(10) model with missing partner mechanism is studied. An intermediate vacuum expectation value is incorporated which corresponds to the see-saw scale. Gauge coupling unification is not broken explicitly. Proton decay is found to satisfy the present experimental limits at the cost of fine-tuning some parameters.Comment: 14 pages; Several improvements, References adde

    Fermions on Thick Branes in the Background of Sine-Gordon Kinks

    Full text link
    A class of thick branes in the background of sine-Gordon kinks with a scalar potential V(ϕ)=p(1+cos2ϕq)V(\phi)=p(1+\cos\frac{2\phi}{q}) was constructed by R. Koley and S. Kar [Classical Quantum Gravity \textbf{22}, 753 (2005)]. In this paper, in the background of the warped geometry, we investigate the issue of localization of spin half fermions on these branes in the presence of two types of scalar-fermion couplings: ηΨˉϕΨ\eta\bar{\Psi}\phi\Psi and ηΨˉsinϕΨ\eta\bar{\Psi}\sin\phi \Psi. By presenting the mass-independent potentials in the corresponding Schr\"{o}dinger equations, we obtain the lowest Kaluza--Klein (KK) modes and a continuous gapless spectrum of KK states with m2>0m^2>0 for both types of couplings. For the Yukawa coupling ηΨˉϕΨ\eta\bar{\Psi}\phi\Psi, the effective potential of the right chiral fermions for positive qq and η\eta is always positive, hence only the effective potential of the left chiral fermions could trap the corresponding zero mode. This is a well-known conclusion which had been discussed extensively in the literature. However, for the coupling ηΨˉsinϕΨ\eta\bar{\Psi}\sin\phi \Psi, the effective potential of the right chiral fermions for positive qq and η\eta is no longer always positive. Although the value of the potential at the location of the brane is still positive, it has a series of wells and barriers on each side, which ensures that the right chiral fermion zero mode could be trapped. Thus we may draw the remarkable conclusion: for positive η\eta and qq, the potentials of both the left and right chiral fermions could trap the corresponding zero modes under certain restrictions.Comment: 22 pages, 21 figures, published version to appear in Phys. Rev.
    corecore