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ABSTRACT: We propose a mechanism for sufficient suppression of dimension-5 operators
for proton decay in a supersymmetric SO(10) model. This mechanism is analogue to the
double seesaw mechanism in studying neutrino masses. Only an intermediate VEV instead
of an intermediate scale is required so that gauge coupling unification is maintained. The
VEV is generated by introducing an anomalous U(1) symmetry whose breaking is at higher
scale. The proton decay amplitudes are suppressed by this VEV over the GUT scale. We
use 45454 in breaking GUT symmetry. 120 is included so that fermion sector is fully
realistic. Assuming a minimal fine-tuning in the Higgs doublet sector, tanS of order one is

predicted.
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1 Introduction

Grand Unified Theory (GUT) [1, 2] is one of the most attractive candidates for the physics
beyond the Standard Model (SM). The Supersymmetric (SUSY) GUT models based on
SO(10) [3, 4] are especially interesting for several reasons. Firstly, each generation of
fermion superfields are unified in a single 16-plet spinor representation which contains
the right-handed neutrino, so that sub-eV neutrino masses can be generated naturally by
the seesaw mechanism [5-13]. Secondly, in the renormalizable versions of SUSY SO(10)
models [14-16], R-parity is conserved automatically which eliminates the most dangerous
dimension-4 operators of proton decay.

The elegant running behaviors of the coupling constants in MSSM strongly suggest
that the unification scale should be taken at 2 x 106 GeV [17-22] which we call the GUT
scale Mq. Not only the three coupling constants are unified at M¢, but also the masses of
the gauge superfields G(SO(10))/G(SM) are taken at the same scale. It has been recognized
recently [23] that instead of an intermediate seesaw scale, in SUSY SO(10) models with
several pairs of 126 +126, only an intermediate vacuum expectation value (VEV) of the
SM singlet in one 126 is needed which couples with the matter superfields. Consequently,
the spectra of this kind of models do not contain particles at intermediate scale so that
gauge coupling unification is maintained, meanwhile the seesaw mechanism still works.
This mechanism is further incorporated in models aiming at sufficiently suppressing proton
decay [24], where the seesaw VEV is related to the VEV of an SO(10) singlet which breaks
an extra global U(1) symmetry. Proton decay amplitudes are found to be suppressed
in [24] by a factor Aﬂj—é, where M; ~ 10 GeV is the seesaw VEV which is much smaller
than the GUT scale Mg ~ 10'6GeV. This suppression of proton decay is archived by
the enhancements of the effective triplet masses through an inversely analogue to the mass
texture in the seesaw mechanism, or a lever mechanism.



In the present work we will extend the observation made by the previous study that the
seesaw VEV might be related to the suppression of proton decay in other models. Instead
of using 210 to break SO(10), we will use 454+54. The global U(1) will be replaced by
an anomalous U(1) whose breaking is generated by an SO(10) singlet through the Green-
Shwarz mechanism [25, 26]. The enhancements of the effective triplet masses responsible
for proton decay are through an inversely analogue to the mass texture in the double-seesaw
mechanism [27, 28]. We will not improve on either the running behavior of the SO(10)
gauge coupling above the GUT scale or on the minimal fine-tuning for the weak doublets
which is implicitly assumed.

In the next section, we will give a simple overview on proton decay suppression. Then,
we will propose in section 3 a renormalizable model and show its consistency with high
energy supersymmetry. Proton decay suppression mechanism in this model is shown in
section 4. The discussion on the weak doublets of the MSSM and the prediction of small
tanf are followed in section 5. We will summarize in section 6.

2 General consideration on proton decay suppression

Consider a simplified model with two pairs of color triplets-anti-triplets, with only one
pair of them couple with fermions. The mass term for the triplets can be written as
(@7)i(M)i;j(¢T);, where 4, j run from 1 to 2. We need to rotate to the mass eigenstates
in order to calculate proton decay amplitudes. Two 2 X 2 unitary matrices U and V are
introduced as

Mj; = Uy My Vi, (2.1)

where M’ = diag(Mi, M>). The mass eigenstates ¢Zs and ¢7s are

(95), = (¢7), Uks (97), = Vis(pr);. (2.2)

Then the dimension-5 operators mediated by the color triplet higgsinos are proportional
to [29]

Z‘GE%UH = <VT ML U) = [(UT M V) 1] = (MY, (2.3)
; ii 1 1

The inverse of (M~1)1; is called the effective triplet mass which mimics the role of the

color triplet higgsino in the simplest models with only one pair of color triplet-anti-triplet.

Eq. (2.3) is easy to be generalized to models with more pairs of color triplets-anti-

triplets. The proton decay amplitudes are proportional to sums of specific elements in the

inverse of the triplet mass matrix. Algebraically, these matrix elements in the inverse mass
matrix can be written as

Det (M;;)

(a17) Det(M)

B "
= (1) (2.4)
where MZ’; represents M with the ith row and the jth column eliminated, whose deter-
minant is called as the algebraic complement, and ¢ and j are the labels of those color

triplets-anti-triplets which can couple with the fermions.



There are two possible ways to get small (M ~1);;’s following (2.4). We can construct
a mass matrix either with all small algebraic complements for the elements which couple
with fermions, or with a large determinant of the entire mass matrix. In the previous
work [24] the first approach is used where the color triplet mass matrix can be symbolically

My = (1\3@ Aj\%‘) . (2.5)

Here M¢ stands for a GUT scale mass while M7 is the intermediate seesaw VEV. Only the
up-left block couples with matter fields, so it is clear that M{;, = My is smaller than Mg.

expressed as

In this work, we are trying to realize the second possibility. The mass matrix for the
color triplets is written as

0 Mg 0
Mp=| Mg 0 Mg |. (2.6)
0 Mg Mp

Again, the matter fields couple with the up-left block only. Here Mp represents a mass
at a scale higher than the GUT scale, or at the Plank scale. Then Det(Mr) ~ MpMZ is
enhanced to give large effective triplet masses.

As the texture in (2.5) is analogue to the neutrino mass matrix in the seesaw mecha-
nism, the present texture in (2.6) is analogue to the neutrino mass matrix in the double-
seesaw mechanism. The mass texture either in (2.5) or in (2.6) is sufficient to suppress
proton decay.

3 The model and SUSY preserving

The particle content of the present model is as follows. First, it contains three genera-
tions of fermion fields which are embedded into three 16-plet (11 23) superfields as usual.
Second, 45+54 (A, E) are introduced to break SO(10). Third, in order to give satisfied
fermion masses and mixing [30], Higgs in 120 (D) is introduced, which is also needed to
couple through 45+54 with those in 10 (H) and in 126/126 (A/A). Forth, the 45 is
further copied (A’) to generate a small VEV for the seesaw mechanism, and to generate
the structure (2.6) for suppression of proton decay. Three sets of Higgs are needed with
the first two sets contain H + A/A + D while the third set contains A/A. An extra U(1)
symmetry, whose breaking is realized by the SO(10) singlets S; and Sy, is introduced to
distinguish these Higgs. All the fields and their U(1) charges are listed in table 1. Note
that the different U(1) charges of the first set of Higgs (H ...) and the third set of Higgs
(Ajz...) also require different fields (A + E and A’) to couple the first two and the last two
sets of Higgs.

Only Hy, D1, A1 couple with matter fields due to the U(1) charges. The Yukawa sector
is given as

Wy = lﬁiéwuijl + Yfg(ﬂ!}i%Dl + Kigﬁ?/)i%zh (3.1)

which is general enough to fit all fermion masses and mixing [15, 31-39].



Vi | Hi,D1,A1/A1 | Hay, Do, Ao /Ny | As/As | AJE | A" | S1 | S2
U(1) charge | —

1 1
1 -1 : 0 | L)1~

N[ =
D=

Table 1. SO(10) multiplets and their U(1) charges.

The general renormalizable Higgs superpotential is given by

_ _ 1 1
W = mpgHiHos + ma19Q109 + mag AoA1 +mp D1 Dy + §mAA2 + ETTLEE2

+H, Hy ()\114 + )\2E> — 1A (AgzlAQ + )\4Z2A1) + F ()\5A1A2 + A6Z1Z2)
+D1 A (A7Hz + AsA2 + MAz) + DaA (AoHy + AM1A1 4 A2Aq)
+D1Dy (M3A + A4E) + M5 E® + MgAE? — i A" (a1 Ao Ay + anA3A)
_ 1 _
+Do A’ (a3 + asAg) + 551 (251A3A3 + ﬁzA/2> + B35 AA". (3.2)

Labeled by the representations under the SU(4)c x SU(2)r, x SU(2) g subgroup of SO(10),
the following components get VEVs responsible for the SO(10) symmetry breaking

A = (A0(1,1,3)), A =(AV(15,1,1)), F = (B(1,1,1);

v(1,2,3) = (Da,2,3(10,1,3)), T2 = (An,2,3(10,1,3)). (3.3)

Inserting these VEVs into (3.2), we get

1 1
(W) = maiov1v2 + magi D201 + 5mA (Af + A%) + §mEE2 + Ao (A3v1v2 + A\qU2v1)

3 1
ot o (e i) A e
1
+§51 (25163213 + B AL + 5214/22) + 9 (B A1 AL + B3 Az A)) (3:4)

where we have defined

1 3 1 3
Ag=(—cA — 2 Ay), A= —A’—A’), 3.5
o= (—5i-pop). A= (340 - s (3.5)

for later convenience.

To preserve SUSY at high energy, the F- and D-flatness conditions are required. The
D-flatness condition requires

v1]? + [v2| + [vs]? = [U1]% + [D2]* + [3]?, (3.6)

which constrains only the sum of |v|?s and |7|%s, so that an intermediate valued VEV of 7
can be generated without breaking gauge coupling unification, if both sides in (3.6) are of
the order M%

The F-flatness conditions

{6 o o0 o0 o0 o9 o0 o9 0 o0 090 0 8}<W):0,




are explicitly

0 = M09, (3.7)
0 = Miovy + OéQAé)@g, (38)
0= OélAéﬁg + 515173, (3.9)
0= M12U2, (3.10)
0 = Myiv1 + a1A61)3, (3.11)
0= a2A6v2 + 51S1v3, (3.12)
1
0= ,BQSlAll + B359A1 — g (()41@2’03 + a2ﬁ302) , (3.13)
3
0 = B2S1AL 4 B3S2As — —— (123 + an¥3v2) , 3.14
B2:51 A5 53225\/6(123 2U3V2) (3.14)
0 = piogvs + 6214/12 + 5214/22 (3.15)
1 _ _ V3 /
0 =mgA) — 5 ()\31)11}2 + )\41)21}1) + %)\mEAl + B?,AISQ, (317)
3 2
0 = mads — —— (A\301v2 + MU0 ) — ——=A16E Ay + B3A55, 3.18
A25\/6(312 40201) e 2 + 834552 (3.18)
3 V3 1
0=mgpE + MsE? 4+ Mg | —=A42 — ——A2 |, 3.19
where
M2 = maia + 340, Moy = mag + Agdo. (3.20)

From (3.6) to (3.19), there are 13 variables and 14 equations in total, but only 12 of the
equations are independent. One of the VEVs, St for example, can be assigned to any scale.
First, (3.7)—(3.9) are linear equations about the Ts, which can be rewritten as

0 M O
(51, U2, @3) My 0 adf | =0. (3.21)
0 ady A5t

Similarly, equations (3.10)—(3.12) can be rewritten as

0 M12 0 U1
My 0 a4 v | =0. (3.22)
0 Ay 1S U3

Both (3.21) and (3.22) require
p151Mi2Ma1 = 0, (3.23)

which corresponds to three different possibilities as following. If S; = 0, a lot of particles
cannot get masses through couplings with S7. Thus this case is simply excluded. If M3 =0



is taken, then from (3.21)—(3.22) it follows that 77 = Mg and U = U3 = 0 which gives too
small neutrino masses and is thus excluded as well. We thus have the last possibility,

My =0, (3.24)
which gives
vy asAy T B151
NMa = :Oa - = - , — = — R 3.25
vl G Y2 s V3 M12 V3 a1A6 ( )

following (3.21) and (3.22). Then, 77 2 3 are expressed by vy through (3.6).

Furthermore, substituting vs = v3 = 0 into (3.13)—(3.14), A} and A} can be expressed
by A; and Aj, respectively, and (3.16) is now identical to (3.15). Equation Ms; = 0
in (3.24) itself gives the dependence of As on A; through (3.20). Taking S as free, the
remaining variables are now Aj, F,Se,v; with equations (3.15), (3.17), (3.18) and (3.19)
left. Given the parameters in (3.2), all the VEVs are now determined. Numerically, Ay,
Ay and E are taken as GUT scale VEVs in order to break SO(10) down to MSSM.

According to the analysis in [40], the extra U(1) symmetry is naturally related to string
theory, and it is appropriate to take the VEV of breaking this U(1) at

Sy ~ 10" GeV ~ 10M¢.
After inserting (3.13)—(3.14) into (3.17)—(3.18), the last terms will change into

B353 P33
B251 B251

They are naturally at the same scale as other terms, i.e. M(Q;7 which indicates that

1 1
Sy~ ——8) ~VI0Mg, A}~ Ay~ ——

B3 A} Sy — — Ay, B3ALS: — — Ay.

M.
Thus we get from (3.25)

(vl, . vg) - (O(MG), 0, 0) (m, T, @3) —0 <10_2Mg, Mg, 10—%MG>. (3.26)

Now that all the constrains on SUSY preserving have been satisfied, all the VEVs can be
determined and all their scales are known. The seesaw VEV v; ~ M is naturally generated
at 1072M, which differs from [24] where it introduced a VEV of an SO(10) singlet which
broke a global U(1) symmetry.

Consequence of the large masses of the third set of Higgs and A’ given by the VEV
S1 ~ 10Mg is that these Higgs are to be integrated out above the GUT scale Mg, so that
they do not affect the running behaviors of gauge couplings of MSSM.

4 Proton decay suppression

To demonstrate the effectiveness of the present model on solving the proton decay problem,
we need to write down the color triplet mass matrix. The color triplets are ordered as

or = <H1T7D1T7DllTvAlTale7Z,1T;H2T7D2T7D§T7A2T7Z2T7Z/2T§ A3T7Z3T,Z;,T> ,
(4.1)



while the color anti-triplets are

SOT = (HIT’ ‘DIT’ D/1T7 A1T7 AlT’ A/1T’ HQT’ D2T7 DIQT’ AQT’ A2T7 A/2T7 A3T’ A3T’ A/ )
(4.2)

The mass term of the Higgs color triplets is given by (¢7)a(M7)ab(¢1)s, With the 15 x 15
matrix My written as

Ox6) Bi2ex6) O6x3)

Mr = | Baiexe) Owxe) B2sex3) | - (4.3)
Oix6) Bsazxe) B333x3)
where
Buip  —204, 2oy, 0 0 0
%Al Bpi2 0 — ;AfsAl 2“}/1 — y%A
V2 / i\ i\ i\
Big = B 0 Bb1a \/iAQ 7\/%A2 7\/%141
i i\ 2\ ’
0 2\?14 \/EAQ ma12 + 5\[14 %E 0
0 SutAr DLLA ZEE mas — A 0
0 %AQ @%Al 0 O mAgl — SL\;EA2
(4.4)
Bun  —22A — 2 4, 0 0 0
LA Bpa 0 — A —SRA —D2 Ay
. —72‘@1()@ 0 By DAL Ao ~514, ~Suy
21 — . )
0 \Z/A%AQ \Z/)\%Al 0 0 mMmA12 — 5)\7\;6142
(4.5)
0 0 0
Q / i / 1} /
—aAL AL - )
i / Qo / 1} /
B _ | Vet Tvate Ty
23 = ) ; (4.6)
\I[A 0 0
/
0 5fA 0
/
0 0 fA
Q. / Q. /! o /
0 \/tA —\/%A \}A 0 0
By =10 2“’\‘}14’ \’/‘%Aé 0 5\[A/ 0 , (4.7)
i / 1} / [} /
042 i5d 0 0 —55%



and

5151 0 0
Bss = 0 (151 0 . (4.8)
0 0 /S
Here

i\ 2 i\ 2
BngEmH—FTéAQ—F\/T%E, BHQIEmH_TéA2+\/T>25E7

i)\lg 4)\14 i>\13 4)\14
Bpia =mp + Ay + , Bpo1 =mp — A E,

D12 D 3\/6 2 3\/E D21 D 3\/6 2 3\/ﬁ

Bpia =mp + iA1s A Aud E, Bpy =m s A o '

3v6 © VIs PUSVETY Vs

The mass matrix can be also expressed symbolically as

Oix6)  Maexo) O(6x3)

Mr = | Mgexe)  Owixo) \/%T)MG(6><3) . (4.9)

0(3x6) \/%*OMG(?,XG) 10Mg(3x3)
Note that the texture in (4.9), constrained by the F- and D-flatness conditions, differs
slightly from that in (2.6). However, as will be seen in the rest of this section, the mechanism
of suppressing proton decay following (2.6) will not change.
In SUSY GUTs, the dominant channels inducing proton decay are through the
dimension-5 operators [41, 42]

1 g
—Ws5 = Czjkliqiqjqkll + C’gklufd;?uzelc, (4.10)

which are called the LLLL and RRRR operators, respectively, obtained by integrating
out the color triplet and anti-triplet Higgs superfields in the interactions in (3.1). Both
C’gkl and C’gkl are inversely proportional to the effective mass of the colored Higgsino.
Since only Bj; part couples with fermions, we can get the effective mass by integrating
out the uncoupled parts. From (4.9), such a mass matrix is similar to the mass matrix
in the double seesaw models for neutrino masses [27, 28] which is used to generate the
small neutrino masses. In the present model, the effective masses are large instead of
small because Baog ~ B3o < Bio ~ Bs; < Bss. Similarly, this proton decay suppression
mechanism requires two steps of integrations. Since S7 is ten times of the GUT scale, the
Bss part can be integrate out first. Then the mass matrix becomes

Mci6x6) Mi(6xe)

where
M(xe)y = —Bos - Biy' - Bsa, (4.12)
is a matrix with all elements of the order 1072M. Then after the second step,
Megr = —Ba1 - My g - Bi2 ~ Aj\f" ~2x 10" GeV, (4.13)
I



which is of the order of the Plank scale, a hundred times heavier than those color triplet
Higgs masses in SUSY GUT models. The proton decay rates will be suppressed by a factor
of 1074, which is small enough surviving all the current experimental limits. One may have
found that M) is a rank 3 matrix and is thus not reversible. This is because that we
have not introduced the third 10+120-plet Hs 4+ D3 for simplicity. But, as was discussed
in [23, 24], each rank contributes one eigenvalue in the effective masses. The diagonal form
of the effective mass matrix is

M2 M?% M2
Mg = diag O(G, i ol AN oo,oo) ) (4.14)

Note that it is the lightest eigenvalues that dominates the proton decay rates, while the
three infinitely heavy masses do not contribute.

The suppression can be better understood if we write down the dimension-5 operators
explicitly. The coefficients Crs at the GUT scale Mg are [43]

(M1 (Mp )1 (MY )1s (MY | [ Y

-1 -1 1 -1
Rl ) = (vid yid yid vy (Mg )21 (Mg )22 (Mg )2z (Mg )2a Y5
L (Mg) = 105 41205 *1200 1126 1 1 1 1 El
(Mg )31 (Mg )32 (Mg )ss (Mg )sa || Yido
(M7 Y51 (M7 )52 (My')ss (Mp)sa )\ Y

(4.15)

Here the Yukawa couplings are strongly constrained by fitting the fermion masses and
mixing [33, 37-39]. The elements of M' are of the order ﬁg in usual SUSY GUT models,
but in our model,
3
-2 -5
10(6><6) L(6x6) 10(62x3)

_ 1
MTl — Mig 1(6><6) O(GXG) 0(6><3) . (4.16)
3
-3 1
10(316) O(3x6) 10(3x3)
We can see clearly that the elements contributing to dimension-5 operators, i.e. elements in
the up-left most block, are of the order %. This is the same conclusion drawn in (4.13).

This conclusion applies for both the LLLL and RRRR operators.

5 The weak doublets

Like in [24], the doublet-triplet splitting (DTS) problem requires a minimal fine-tuning,
and similar results can be reached. The up-type doublets are ordered as

Pu = (Hluy Dlu’ Diu’ Allnzlu; H2ua D2ua D/QW AQWZ%L; ABU7ZBU>a (51)
while down-type doublets are

P4 = <H1d, Dya, D gy Ava, Ava; Hog, Dag, Dy, Dog, Nog; Asa, A3d)- (5.2)



The mass terms of the weak doublets are given by (©q)a(Mp)as(pu)p, With the 12 x 12
matrix Mp written as

Oixs)  A12ixs) O5x2) Oixs) Mg sxs) O(5x2)
Mp = | Azsxs) Opxs) Awmex2) | = | Maexs)  Oexs) \/%—OMG(E,Xz) . (5.3)
Oaxs)  Aszaxs) As32x2) O2x5) \/%*OMG(sz;) 10Mg(2x2)

For general parameters, there is no massless doublet. The DTS, which requires a zero
determinant of Mp, can be obtained if

Det(MD) = Det(Alg) * Det(Agl) * Det(Agg) =0. (54)

Det(Agss) is obviously nonzero, leaving us two choices. Det(A;2) = 0 is not acceptable be-
cause the large top quark mass would not be generated for perturbative Yukawa couplings.
If we chose Det(Ag1) = 0, we will further get the massless doublet can be expressed as

13 13
H, =Y aliel, Hy=)Y ol (5.5)
=1 i=1

and the components are, up to a normalization factor,

five seven

ay =0(1072,...,107%1,...,1;1072,...,10"2). (5.6)
—_— ——  ——

five five two

The large ratio of Z—:u (¢ <'5) is consistent with the ratio of %’i ~ 100 at high energy [33, 37—
d

39]. It also gives the constrain on tang

tanf = % ~ 11072 ~ O(1). (5.7)
Vg My
Equation (5.7) suggests that a small tang is favored in the present model, which is also
the same conclusion drawn in [24].

6 Summery and conclusions

As in [24], we do not perform explicitly the fine-tuning in the weak doublets which takes
only one free parameter in the superpotential. As was pointed out in [30], threshold effects
can be big in the minimal SUSY SU(5) theory, and can be even bigger due to the more
super-heavy particles in SO(10) models. In this work, we have focused mainly on the new
method of proton decay suppression and this method does not require explicit threshold
effect calculations. The other reason is that there are more than enough free parameters
in the superpotential that can be adjusted in calculating the threshold effects to fulfill the
gauge coupling unification.

~10 -



In the present work we have presented a renormalizable SUSY SO(10) model with
sufficient suppression of proton decay. Similar to [24], gauge coupling unification is main-
tained due to the absence of intermediate scales, and the seesaw VEV, proton decay and
tanf are found to be all related, Thus the main conclusions are quite general in a class
of models which follow the mechanisms of suppressing proton decay through constructing
seesaw-like textures in the color triplet mass matrices. Different from the previous study,
we use 45+54 instead of 210 to break SO(10). Instead of a global U(1) used in [24], we
use an anomalous U(1) to generate the seesaw VEV through Green-Schwarz mechanism.
We have also included 120-plet Higgs to couple with fermions so that the model is highly
realistic. We have, however, two main problems untouched. The first is the DTS problem
which we simply use an assumed fine-tuning in the weak doublets. The second is the per-
turbative difficulty for the gauge coupling above the GUT scale which is also common to
all realistic SUSY GUT models.

We can compare our work with [44, 45] where Higgs in 10 + 120 + 126/126 are
used to fit fermion masses and mixing while 210 is used to break SO(10). Proton decay
suppression is carried out by raising the GUT scale up to the Planck scale or even higher so
that the color-triplet Higgs masses are also enhanced accordingly, otherwise proton lifetime
is around 10?8 yr only. This picture conflicts with the most important results supporting
SUSY GUT which suggest the GUT scale to be Mg ~ 2 x 106 GeV [19-22]. In our work,
the suppression of proton decay is realized by enhancement of the effective triplet masses
and the unification scale remains at M.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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