58 research outputs found

    Planning Large Single Frequency Networks for DVB-T2

    Get PDF
    [EN] The final coverage and associated performance of an SFN is a joint result of the properties of all transmitters in the SFN. Due to the large number of parameters involved in the process, finding the right configuration is quite complex. The purpose of the paper is to find optimal SFN network configurations for DVB-T2. Offering more options of system parameters than its predecessor DVB-T, DVB-T2 allows large SFN networks. However, self-interference in SFNs gives rise to restrictions on the maximum inter-transmitter distance and the network size. In order to make optimum use of the spectrum, the same frequency can be reused over different geographical areas - beyond the reuse distance to avoid co-channel interference. In this paper, a methodology based on theoretical network models is proposed. A number of network architectures and network reference models are considered here for different reception modes in order to study the effects of key planning factors on the maximum SFN size and minimum reuse distance. The results show that maximum bitrate, network size and reuse distance are closely related. In addition, it has been found that the guard interval is not the only limiting parameter and that its impact strongly depends on the rest of DVB-T2 mode parameters as well as on the network characteristics (Equivalent Radiated Power, effective height, inter-transmitter distance). Assuming that the C/N requirements are in the vicinity of 20 dB and bitrates over 30 Mbps, it has been found that the network can be as large as 360 x 360 km (delivering 39.2 Mbps) or even 720 x 720 km (delivering 37.5 Mbps). The reuse distance will also have a complex dependency on the DVB-T2 mode and especially the network parameters, ranging from below 100 to 300 km.This work has been financially supported by the Beihang University, IRT, the University of the Basque Country UPV/EHU (UFI 11/30 and program for the specialization of the postdoctoral researcher staff) and by the Spanish Ministry of Economy and Competitiveness under the project HEDYT-GBB (TEC2012-33302)

    Intra-Articular Injection of Fructus Ligustri Lucidi Extract Attenuates Pain Behavior and Cartilage Degeneration in Mono-Iodoacetate Induced Osteoarthritic Rats

    Get PDF
    Fructus Ligustri Lucidi (FLL) has been widely used as a traditional Chinese medicine (TCM) for treating soreness and weakness of waist and knees. It has potential for treating OA owing to its kidney-tonifying activity with bone-strengthening effects, but there is so far no report of its anti-OA effect. This study established a rat OA model by intra-articular (IA) injection of mono-iodoacetate (1.5 mg) and weekly treated by IA administration of FLL at 100 μg/mL for 4 weeks. Thermal withdrawal latency, mechanical withdrawal threshold, and spontaneous activity were tested for evaluation of pain behavior, and histopathological (HE, SO, and ABH staining) and immunohistochemical (Col2, Col10, and MMP13) analyses were conducted for observation of cartilage degradation. In vitro effect of FLL on chondrocytes was evaluated by MTT assay and qPCR analysis. Moreover, HPLC analysis was performed to determine its chemoprofile. The pain behavioral data showed that FLL attenuated joint pain hypersensitivity by increasing thresholds of mechanical allodynia and thermal hyperalgesia as well as spontaneous activity. The histopathological result showed that FLL reversed OA cartilage degradation by protecting chondrocytes and extracellular matrix in cartilage, and the immunohistochemical analysis revealed its molecular actions on protein expressions of MMP13, Col2, and Col10 in cartilage. The MTT assay showed its proliferative effects on chondrocytes, and qPCR assay clarified its mechanism associated with gene expressions of Mmp13, Col2, Col10, Adamts5, Aggrecan, and Runx2 in TNF-α treated chondrocytes. Our results revealed an anti-OA effect of FLL on pain behavior and cartilage degradation in OA rats and clarified a molecular mechanism in association with the suppression of chondrocyte hypertrophy and catabolism. IA FLL can be regarded as novel and promising option for OA therapy

    Cyclophilin E Functions as a Negative Regulator to Influenza Virus Replication by Impairing the Formation of the Viral Ribonucleoprotein Complex

    Get PDF
    The nucleoprotein (NP) of influenza A virus is a multifunctional protein that plays a critical role in the replication and transcription of the viral genome. Therefore, examining host factors that interact with NP may shed light on the mechanism of host restriction barriers and the tissue tropism of influenza A virus. Here, Cyclophilin E (CypE), a member of the peptidyl-propyl cis-trans isomerase (PPIase) family, was found to bind to NP and inhibit viral replication and transcription.In the present study, CypE was found to interact with NP but not with the other components of the viral ribonucleoprotein complex (vRNP): PB1, PB2, and PA. Mutagenesis data revealed that the CypE domain comprised of residues 137–186 is responsible for its binding to NP. Functional analysis results indicated that CypE is a negative regulator in the influenza virus life cycle. Furthermore, knock-down of CypE resulted in increased levels of three types of viral RNA, suggesting that CypE negatively affects viral replication and transcription. Moreover, up-regulation of CypE inhibited the activity of influenza viral polymerase. We determined that the molecular mechanism by which CypE negatively regulates influenza virus replication and transcription is by interfering with NP self-association and the NP-PB1 and NP-PB2 interactions.CypE is a host restriction factor that inhibits the functions of NP, as well as viral replication and transcription, by impairing the formation of the vRNP. The data presented here will help us to better understand the molecular mechanisms of host restriction barriers, host adaptation, and tissue tropism of influenza A virus

    Dynamic scheduling of multiclass queueing networks

    No full text
    Ph.D.Jiangang Da

    A New Methodology Combining Geophysical Calculations and Geological Analysis to Identify and Characterize Carrier Systems for Vertical Hydrocarbon Migration in the Central Diapir Zone of the Yinggehai Basin, China

    No full text
    To understand hydrocarbon migration in terms of the mechanisms, accumulations and exploration targets, it is essential to correctly identify and characterize the carrier systems that control fluid-migration history and oil/gas reservoir formation. The Yinggehai Basin in China is an important area for natural gas exploration and production. However, due to the argillaceous sand sedimentary environment and the absence of faults from the Neogene thermal subsidence period, traditional migration pathways are absent in the Yinggehai Basin, posing significant challenges to target evaluation in this area. Exploration shows that most of the existing gas reservoirs are associated with vertical migration. In this work, coherence cube and curvature seismic techniques are used in the central diapir zone of the Yinggehai Basin to identify diapir-associated fractures and regional stress. Together with geological analysis, two categories of carrier system are discussed in detail to explain the complex migration and accumulation patterns that have puzzled the area. Diapirs have five evolutionary phases, i.e., pressurization, piercing, equilibrium, release and collapse, which have different fracture development patterns, leading to different mechanisms of hydrocarbon migration and accumulation. The carbon isotopes of gaseous hydrocarbons in DF shallow layers and mid-deep layers have an inverted order distribution, indicating mixed accumulation with different maturity, whereas in the mid-deep layers of the diapir-affected areas, there is a single accumulation with low maturity. Early diapiric activity allowed the natural gas produced from deep source rocks to migrate upward along the diapiric carrier system and accumulate in suitable traps to form gas reservoirs. For regional-stress related fractures, the gradual loss of overpressure and fluids from deep to shallow in high-pressure fractures results in the gas accumulation time of deep traps in the regional stress-related carrier system being relatively late and the gas accumulation time of shallow traps being relatively early

    A New Methodology Combining Geophysical Calculations and Geological Analysis to Identify and Characterize Carrier Systems for Vertical Hydrocarbon Migration in the Central Diapir Zone of the Yinggehai Basin, China

    No full text
    To understand hydrocarbon migration in terms of the mechanisms, accumulations and exploration targets, it is essential to correctly identify and characterize the carrier systems that control fluid-migration history and oil/gas reservoir formation. The Yinggehai Basin in China is an important area for natural gas exploration and production. However, due to the argillaceous sand sedimentary environment and the absence of faults from the Neogene thermal subsidence period, traditional migration pathways are absent in the Yinggehai Basin, posing significant challenges to target evaluation in this area. Exploration shows that most of the existing gas reservoirs are associated with vertical migration. In this work, coherence cube and curvature seismic techniques are used in the central diapir zone of the Yinggehai Basin to identify diapir-associated fractures and regional stress. Together with geological analysis, two categories of carrier system are discussed in detail to explain the complex migration and accumulation patterns that have puzzled the area. Diapirs have five evolutionary phases, i.e., pressurization, piercing, equilibrium, release and collapse, which have different fracture development patterns, leading to different mechanisms of hydrocarbon migration and accumulation. The carbon isotopes of gaseous hydrocarbons in DF shallow layers and mid-deep layers have an inverted order distribution, indicating mixed accumulation with different maturity, whereas in the mid-deep layers of the diapir-affected areas, there is a single accumulation with low maturity. Early diapiric activity allowed the natural gas produced from deep source rocks to migrate upward along the diapiric carrier system and accumulate in suitable traps to form gas reservoirs. For regional-stress related fractures, the gradual loss of overpressure and fluids from deep to shallow in high-pressure fractures results in the gas accumulation time of deep traps in the regional stress-related carrier system being relatively late and the gas accumulation time of shallow traps being relatively early

    Broadband Spectrum Light-Driven PANI/Au/Beta-Cyclodextrin Nanocomposite and Its Light-Triggered Interfacial Carrier Transfer

    No full text
    Polyaniline/Au nanocomposites were synthesized by a novel method. Aniline monomers were loaded in the hydrophobic cavities of beta-cyclodextrin, and a polymerization reaction occurred at the interface of the beta-cyclodextrin cavities and the liquid phase of chloroauric acid. UV-vis absorbance indicated that the nanocomposite covered the range of visible light and NIR (near infrared). The photo-excitation experiment was carried out with typical wavelengths in the visible light (405 nm, 532 nm, and 650 nm) and NIR (780 nm, 808 nm, 980 nm, and 1064 nm) regions (10–200 mW) based on Au inter-digital electrodes on flexible polymer substrates casting a thick film. The nanocomposites exhibited photo-current switching behavior in visible light and NIR. The ratio of on/off was enormously dependent on the power and wavelength of incident light. The robust interface coupling between Au and PANi of the nanocomposite promoted the separation and transfer of electron/hole. The mechanism of carrier generation, separation, and transfer at interfaces of Au/conjugated polymer/non-conjugated small organic molecules by light inducement was discussed at the electron level. The results illustrate that the nanocomposites quickly produced free electrons and holes by low-power incident light, could prevent the recombination of electron/hole pairs to a certain extent, and could overcome the interface barriers between metal, conjugated polymer, and small organic molecules for transfer. This provides a simple and practical approach for developing multi-functional nanocomposites that have the potential act as intelligent nano-carriers, photo-current switches, NIR detectors, and for information storage

    Tone perception in Mandarin-speaking school age children with otitis media with effusion.

    No full text
    The present study explored tone perception ability in school age Mandarin-speaking children with otitis media with effusion (OME) in noisy listening environments. The study investigated the interaction effects of noise, tone type, age, and hearing status on monaural tone perception, and assessed the application of a hierarchical clustering algorithm for profiling hearing impairment in children with OME.Forty-one children with normal hearing and normal middle ear status and 84 children with OME with or without hearing loss participated in this study. The children with OME were further divided into two subgroups based on their severity and pattern of hearing loss using a hierarchical clustering algorithm. Monaural tone recognition was measured using a picture-identification test format incorporating six sets of monosyllabic words conveying four lexical tones under speech spectrum noise, with the signal-to-noise ratio (SNR) conditions ranging from -9 to -21 dB.Linear correlation indicated tone recognition thresholds of children with OME were significantly correlated with age and pure tone hearing thresholds at every frequency tested. Children with hearing thresholds less affected by OME performed similarly to their peers with normal hearing. Tone recognition thresholds of children with auditory status more affected by OME were significantly inferior to those of children with normal hearing or with minor hearing loss. Younger children demonstrated poorer tone recognition performance than older children with OME. A mixed design repeated-measure ANCOVA showed significant main effects of listening condition, hearing status, and tone type on tone recognition. Contrast comparisons revealed that tone recognition scores were significantly better under -12 dB SNR than under -15 dB SNR conditions and tone recognition scores were significantly worse under -18 dB SNR than those obtained under -15 dB SNR conditions. Tone 1 was the easiest tone to identify and Tone 3 was the most difficult tone to identify for all participants, when considering -12, -15, and -18 dB SNR as within-subject variables. The interaction effect between hearing status and tone type indicated that children with greater levels of OME-related hearing loss had more impaired tone perception of Tone 1 and Tone 2 compared to their peers with lesser levels of OME-related hearing loss. However, tone perception of Tone 3 and Tone 4 remained similar among all three groups. Tone 2 and Tone 3 were the most perceptually difficult tones for children with or without OME-related hearing loss in all listening conditions.The hierarchical clustering algorithm demonstrated usefulness in risk stratification for tone perception deficiency in children with OME-related hearing loss. There was marked impairment in tone perception in noise for children with greater levels of OME-related hearing loss. Monaural lexical tone perception in younger children was more vulnerable to noise and OME-related hearing loss than that in older children
    • …
    corecore