146 research outputs found

    Dosimetric comparison of intensity modulated radiotherapy and three-dimensional conformal radiotherapy in patients with gynecologic malignancies: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: To quantitatively evaluate the safety and related-toxicities of intensity modulated radiotherapy (IMRT) dose–volume histograms (DVHs), as compared to the conventional three-dimensional conformal radiotherapy (3D-CRT), in gynecologic malignancy patients by systematic review of the related publications and meta-analysis. METHODS: Relevant articles were retrieved from the PubMed, Embase, and Cochrane Library databases up to August 2011. Two independent reviewers assessed the included studies and extracted data. Pooled average percent irradiated volumes of adjacent non-cancerous tissues were calculated and compared between IMRT and 3D-CRT for a range of common radiation doses (5-45Gy). RESULTS: In total, 13 articles comprised of 222 IMRT-treated and 233 3D-CRT-treated patients were included. For rectum receiving doses ≥30 Gy, the IMRT pooled average irradiated volumes were less than those from 3D-CRT by 26.40% (30 Gy, p = 0.004), 27.00% (35 Gy, p = 0.040), 37.30% (40 Gy, p = 0.006), and 39.50% (45 Gy, p = 0.002). Reduction in irradiated small bowel was also observed for IMRT-delivered 40 Gy and 45 Gy (by 17.80% (p = 0.043) and 17.30% (p = 0.012), respectively), as compared with 3D-CRT. However, there were no significant differences in the IMRT and 3D-CRT pooled average percent volumes of irradiated small bowel or rectum from lower doses, or in the bladder or bone marrow from any of the doses. IMRT-treated patients did not experience more severe acute or chronic toxicities than 3D-CRT-treated patients. CONCLUSIONS: IMRT-delivered high radiation dose produced significantly less average percent volumes of irradiated rectum and small bowel than 3D-CRT, but did not differentially affect the average percent volumes in the bladder and bone marrow

    Decreased Triple Network Connectivity in Patients with Recent Onset Post-Traumatic Stress Disorder after a Single Prolonged Trauma Exposure

    Full text link
    The triple network model provides a common framework for understanding affective and neurocognitive dysfunctions across multiple disorders, including central executive network (CEN), default mode network (DMN), and salience network (SN). Considering the effect of traumatic experience on post-traumatic stress disorder (PTSD), this study aims to explore the alteration of triple network connectivity in a specific PTSD induced by a single prolonged trauma exposure. With an arterial spin labeling sequence, three networks were first identified using independent component analysis among 10 PTSD patients and 10 healthy survivors, who experienced the same coal mining flood disaster. Then, the triple network connectivity was analyzed and compared between PTSD and non-PTSD groups. In PTSD patients, decreased connectivity was identified in left middle frontal gyrus of CEN, left precuneus and bilateral superior frontal gyrus of DMN, and right anterior insula of SN. The decreased connectivity in left middle frontal gyrus of CEN was associated with clinical severity. Furthermore, no significant connection of SN with CEN and DMN was found in PTSD patients. The decreased triple network connectivity was found in this study, which not only supports the triple network model, but also suggests a possible neurobiological mechanism for cognitive dysfunction of this type of PTSD

    Affective and Cognitive Empathy in Pre-teachers With Strong or Weak Professional Identity: An ERP Study

    Get PDF
    Pain empathy is influenced by a number of factors. However, few studies have examined the effects of strength of professional identity on pain empathy in pre-service teachers. This study used the event-related potential (ERP) technique, which offers a high temporal resolution, to investigate the neurocognitive mechanisms of pain empathy in pre-teachers with strong or weak professional identity. The N110 and P300 components have been shown to reflect an individual’s emotional sharing and cognitive evaluation in pain empathy, respectively. The results of the current study show that pre-teachers with strong professional identity showed a significant difference in N110 amplitudes evoked towards painful and non-painful stimuli; whereas pre-teachers with weak professional identity did not show a significant difference in the amplitudes evoked by the two stimulus types. For the P300 component, pre-teachers with weak professional identity showed a significant difference in the amplitudes evoked towards painful and non-painful stimuli; whereas pre-teachers with strong professional identity did not show a significant difference in the amplitudes evoked by the two stimulus types. Our results indicate that pre-teachers with strong professional identity show a higher level of pain empathy than those with weak professional identity

    BmILF and I-motif Structure Are Involved in Transcriptional Regulation of \u3cem\u3eBmPOUM2\u3c/em\u3e in \u3cem\u3eBombyx mori\u3c/em\u3e

    Get PDF
    Guanine-rich and cytosine-rich DNA can form four-stranded DNA secondary structures called G-quadruplex (G4) and i-motif, respectively. These structures widely exist in genomes and play important roles in transcription, replication, translation and protection of telomeres. In this study, G4 and i-motif structures were identified in the promoter of the transcription factor gene BmPOUM2, which regulates the expression of the wing disc cuticle protein gene (BmWCP4) during metamorphosis. Disruption of the i-motif structure by base mutation, anti-sense oligonucleotides (ASOs) or inhibitory ligands resulted in significant decrease in the activity of the BmPOUM2 promoter. A novel i-motif binding protein (BmILF) was identified by pull-down experiment. BmILF specifically bound to the i-motif and activated the transcription of BmPOUM2. The promoter activity of BmPOUM2 was enhanced when BmILF was over-expressed and decreased when BmILF was knocked-down by RNA interference. This study for the first time demonstrated that BmILF and the i-motif structure participated in the regulation of gene transcription in insect metamorphosis and provides new insights into the molecular mechanism of the secondary structures in epigenetic regulation of gene transcription

    Room temperature 2D ferromagnetism in few-layered 1TT-CrTe2_{2}

    Full text link
    Spin-related electronics using two dimensional (2D) van der Waals (vdW) materials as a platform are believed to hold great promise for revolutionizing the next generation spintronics. Although many emerging new phenomena have been unravelled in 2D electronic systems with spin long-range orderings, the scarcely reported room temperature magnetic vdW material has thus far hindered the related applications. Here, we show that intrinsic ferromagnetically aligned spin polarization can hold up to 316 K in a metallic phase of 1TT-CrTe2_{2} in the few-layer limit. This room temperature 2D long range spin interaction may be beneficial from an itinerant enhancement. Spin transport measurements indicate an in-plane room temperature negative anisotropic magnetoresistance (AMR) in few-layered CrTe2_{2}, but a sign change in the AMR at lower temperature, with -0.6%\% at 300 K and +5%\% at 10 K, respectively. This behavior may originate from the specific spin polarized band structure of CrTe2_{2}. Our findings provide insights into magnetism in few-layered CrTe2_{2}, suggesting potential for future room temperature spintronic applications of such 2D vdW magnets.Comment: 9 Pages, 4 Figure
    corecore