433,181 research outputs found
Dutch agricultural development and its importance to China : case study: agriculture in Chongming - an overview
Universality of Long-Range Correlations in Expansion-Randomization Systems
We study the stochastic dynamics of sequences evolving by single site
mutations, segmental duplications, deletions, and random insertions. These
processes are relevant for the evolution of genomic DNA. They define a
universality class of non-equilibrium 1D expansion-randomization systems with
generic stationary long-range correlations in a regime of growing sequence
length. We obtain explicitly the two-point correlation function of the sequence
composition and the distribution function of the composition bias in sequences
of finite length. The characteristic exponent of these quantities is
determined by the ratio of two effective rates, which are explicitly calculated
for several specific sequence evolution dynamics of the universality class.
Depending on the value of , we find two different scaling regimes, which
are distinguished by the detectability of the initial composition bias. All
analytic results are accurately verified by numerical simulations. We also
discuss the non-stationary build-up and decay of correlations, as well as more
complex evolutionary scenarios, where the rates of the processes vary in time.
Our findings provide a possible example for the emergence of universality in
molecular biology.Comment: 23 pages, 15 figure
Concepts of quantum non-Markovianity: a hierarchy
Markovian approximation is a widely-employed idea in descriptions of the
dynamics of open quantum systems (OQSs). Although it is usually claimed to be a
concept inspired by classical Markovianity, the term quantum Markovianity is
used inconsistently and often unrigorously in the literature. In this report we
compare the descriptions of classical stochastic processes and quantum
stochastic processes (as arising in OQSs), and show that there are inherent
differences that lead to the non-trivial problem of characterizing quantum
non-Markovianity. Rather than proposing a single definition of quantum
Markovianity, we study a host of Markov-related concepts in the quantum regime.
Some of these concepts have long been used in quantum theory, such as quantum
white noise, factorization approximation, divisibility, Lindblad master
equation, etc.. Others are first proposed in this report, including those we
call past-future independence, no (quantum) information backflow, and
composability. All of these concepts are defined under a unified framework,
which allows us to rigorously build hierarchy relations among them. With
various examples, we argue that the current most often used definitions of
quantum Markovianity in the literature do not fully capture the memoryless
property of OQSs. In fact, quantum non-Markovianity is highly
context-dependent. The results in this report, summarized as a hierarchy
figure, bring clarity to the nature of quantum non-Markovianity.Comment: Clarifications and references added; discussion of the related
classical hierarchy significantly improved. To appear in Physics Report
- …
