3,911 research outputs found
Video Interpolation using Optical Flow and Laplacian Smoothness
Non-rigid video interpolation is a common computer vision task. In this paper
we present an optical flow approach which adopts a Laplacian Cotangent Mesh
constraint to enhance the local smoothness. Similar to Li et al., our approach
adopts a mesh to the image with a resolution up to one vertex per pixel and
uses angle constraints to ensure sensible local deformations between image
pairs. The Laplacian Mesh constraints are expressed wholly inside the optical
flow optimization, and can be applied in a straightforward manner to a wide
range of image tracking and registration problems. We evaluate our approach by
testing on several benchmark datasets, including the Middlebury and Garg et al.
datasets. In addition, we show application of our method for constructing 3D
Morphable Facial Models from dynamic 3D data
Learning Multi-Scale Representations for Material Classification
The recent progress in sparse coding and deep learning has made unsupervised
feature learning methods a strong competitor to hand-crafted descriptors. In
computer vision, success stories of learned features have been predominantly
reported for object recognition tasks. In this paper, we investigate if and how
feature learning can be used for material recognition. We propose two
strategies to incorporate scale information into the learning procedure
resulting in a novel multi-scale coding procedure. Our results show that our
learned features for material recognition outperform hand-crafted descriptors
on the FMD and the KTH-TIPS2 material classification benchmarks
Flexible operation of supercritical power plant via integration of thermal energy storage
© 2018 The Author(s).This chapter presents the recent research on various strategies for power plant flexible operations to meet the requirements of load balance. The aim of this study is to investigate whether it is feasible to integrate the thermal energy storage (TES) with the thermal power plant steam-water cycle. Optional thermal charge and discharge locations in the cycle have been proposed and compared. Dynamic modeling and simulations have been carried out to demonstrate the capability of TES integration in supporting the flexible operation of the power plant. The simulation software named SimuEngine is adopted, and a 600 MW supercritical coal-fired power plant model is implemented onto the software platform. Three TES charging strategies and two TES discharging strategies are proposed and verified via the simulation platform. The simulation results show that it is feasible to extract steam from steam turbines to charge the TES and to discharge the stored thermal energy back to the power generation processes. The improved capability of the plant flexible operation is further studied in supporting the responses to the grid load demand changes. The results demonstrated that the TES integration has led to much faster and more flexible responses to the load demand changes.Peer reviewe
Consistency Checking of Natural Language Temporal Requirements using Answer-Set Programming
Successful software engineering practice requires high quality requirements. Inconsistency is one of the main requirement issues that may prevent software projects from being success. This is particularly onerous when the requirements concern temporal constraints. Manual checking whether temporal requirements are consistent is tedious and error prone when the number of requirements is large. This dissertation addresses the problem of identifying inconsistencies in temporal requirements expressed as natural language text. The goal of this research is to create an efficient, partially automated, approach for checking temporal consistency of natural language requirements and to minimize analysts\u27 workload.
The key contributions of this dissertation are as follows: (1) Development of a partially automated approach for checking temporal consistency of natural language requirements. (2) Creation of a formal language Temporal Action Language (TeAL), which provide a means to represent natural language requirements precisely and unambiguously. (3) Development of a front end to semi-automatically translate natural language requirements into TeAL. (4) Development of a translator from TeAL to the ASP language.
Validation results to date show that the front end tool makes the task of translating natural language requirements into TeAL more accurate and efficient, and the translator generates ASP programs that correctly detect the inconsistencies in the requirements
Freeform extrusion fabrication of advanced ceramics and ceramic-based composites
Ceramic On-Demand Extrusion (CODE) is a recently developed freeform extrusion fabrication process for producing dense ceramic components from single and multiple constituents. In this process, aqueous paste of ceramic particles with a very low binder content ( \u3c 1 vol%) is extruded through a moving nozzle to print each layer sequentially. Once one layer is printed, it is surrounded by oil to prevent undesirable water evaporation from the perimeters of the part. The oil level is regulated just below the topmost layer of the part being fabricated. Infrared radiation is then applied to uniformly and partially dry the top layer so that the yield stress of the paste increases to avoid part deformation. By repeating the above steps, the part is printed in a layer-wise fashion, followed by post-processing. Paste extrusion precision of different extrusion mechanisms was compared and analyzed, with an auger extruder determined to be the most suitable paste extruder for the CODE system. A novel fabrication system was developed based on a motion gantry, auger extruders, and peripheral devices. Sample specimens were then produced from 3 mol% yttria stabilized zirconia using this fabrication system, and their properties, including density, flexural strength, Young\u27s modulus, Weibull modulus, fracture toughness, and hardness were measured. The results indicated that superior mechanical properties were achieved by the CODE process among all the additive manufacturing processes. Further development was made on the CODE process to fabricate ceramic components that have external/internal features such as overhangs by using fugitive support material. Finally, ceramic composites with functionally graded materials (FGMs) were fabricated by the CODE process using a dynamic mixing device --Abstract, page iv
Automatic Structural Scene Digitalization
In this paper, we present an automatic system for the analysis and labeling
of structural scenes, floor plan drawings in Computer-aided Design (CAD)
format. The proposed system applies a fusion strategy to detect and recognize
various components of CAD floor plans, such as walls, doors, windows and other
ambiguous assets. Technically, a general rule-based filter parsing method is
fist adopted to extract effective information from the original floor plan.
Then, an image-processing based recovery method is employed to correct
information extracted in the first step. Our proposed method is fully automatic
and real-time. Such analysis system provides high accuracy and is also
evaluated on a public website that, on average, archives more than ten
thousands effective uses per day and reaches a relatively high satisfaction
rate.Comment: paper submitted to PloS On
- …