363 research outputs found
An Empirical Study of Multiple Listings
This study examines the multiple listing phenomena by studying the characteristics of the hosting and listing countries and listing firms of the multiple-listed stocks. We document the loss of preeminence of the US as a preferred hosting country, this role now being taken by the EU. We find that generally larger firms with higher returns and enhanced growth prospects tend to list in multiple markets. They grow larger and received higher overvaluations from investors with each additional foreign listing. A positive listing premium is found but it diminishes as the listing order goes up and increases as the listing dates become more recent. Listing premiums of different orders relate to different country characteristics. We find no evidence to support the bonding hypothesis.
Frida Kahlo’s Self-Identity: An Analysis of Self-Portrait on the Borderline Between Mexico and the United States
Self-Portrait on the Borderline Between Mexico and the United States by the Mexican artist Frida Kahlo reveals a multitude of insights. This paper assesses how the nuances embodied in the painting serve as critical clues to comprehend Frida Kahlo’s personal experiences, Mexican culture, and the approach of discovering the contextual background through the work of art. Beginning with a detailed formal analysis of the portrait, this paper further explores it by making connections with contextual evidence. Through timely reference to Frida Kahlo’s political stance, cultural identity, and health, the paper demonstrates how the painting proffers insight into both the artist’s life and Aztec culture
Engineering of Polyamidoamine Dendrimers for Cancer Therapy
Dendrimers are a class of polymers with a highly branched, three-dimensional architecture comprised of an initiator core, several interior layers of repeating units, and multiple active surface terminal groups. Dendrimers have been recognized as the most versatile compositionally and structurally controlled nanoscale building blocks for drug and gene delivery. Polyamidoamine (PAMAM) dendrimers have been most investigated because of their unique structures and properties. Polycationic PAMAM dendrimers form compacted polyplexes with nucleic acids at physiological pH, holding great potential for gene delivery.
Folate receptor (FRα) is expressed at very low levels in normal tissues but expressed at high levels in cancers in order to meet the folate demand of rapidly dividing cells under low folate conditions. Our primary aim was to investigate folic acid (FA)-conjugated PAMAM dendrimer generation 4 (G4) conjugates (G4-FA) for targeted gene delivery. The in vitro cellular uptake and transfection efficiency of G4-FA conjugates and G4-FA/DNA polyplexes were investigated in Chapter 4. It was found the cellular uptake of G4-FA conjugates and G4-FA/DNA polyplexes was in a FR-dependent manner. Free FA competitively inhibited the cellular uptake of G4-FA conjugates and G4-FA/DNA polyplexes. G4-FA/DNA polyplexes were preferentially taken up by FR-positive HN12 cells but not FR-negative U87 cells. In contrast, the cellular uptake of G4 dendrimers and G4/DNA polyplexes was non-selective via absorptive endocytosis. G4-FA conjugates significantly enhanced cytocompatibility and transfection efficiency compared to G4 dendrimers. This work demonstrates that G4-FA conjugates allow FR-targeted gene delivery, reduce cytotoxicity, and enhance gene transfection efficiency.
The in vivo biodistribution of G4-FA conjugates and anticancer efficacy of G4-FA/siRNA polyplexes were investigated in Chapter 5. Vascular endothelial growth factor A (VEGFA) is one of the major regulators of angiogenesis, essential for the tumor development. It was found G4-FA/siVEGFA polyplexes significantly knocked down VEGFA mRNA expression and protein release in HN12 cells. In the HN12 tumor-bearing nude mice, G4-FA conjugates were preferentially taken up by the tumor and retained in the tumor for at least 21 days following intratumoral (i.t.) administration. Two-dose i.t. administration of G4-FA/siVEGFA polyplexes significantly inhibited tumor growth by lowering tumor angiogenesis. In contrast, two-dose i.t. administration of G4/siVEGFA polyplexes caused severe skin lesion, presumably as a result of local toxicity. Taken together, this work shows great potential for the use of G4-FA conjugates in targeted gene delivery and cancer gene therapy.
We also explored polyanionic PAMAM dendrimer G4.5 as the underlying carrier to carry camptothecin (CPT) for glioblastoma multiforme therapyin Chapter 6. Click chemistry was applied to improve polymer-drug coupling reaction efficiency. The CPT-conjugate displayed a dose-dependent toxicity with an IC50 of 5 ÎĽM, a 185-fold increase relative to free CPT, presumably as a result of slow release. The conjugated CPT resulted in G2/M arrest and cell death while the dendrimer itself had little to no toxicity. This work indicates highly efficient click chemistry allows for the synthesis of multifunctional dendrimers for sustained drug delivery.
Immobilizing PAMAM dendrimers to the cell surface may represent an innovative method of enhancing cell surface loading capacity to deliver therapeutic and imaging agents. In Chapter 7, macrophage RAW264.7 (RAW) was hybridized with PAMAM dendrimer G4.0 (DEN) on the basis of bioorthogonal chemistry. Efficient and selective cell surface immobilization of dendrimers was confirmed by confocal microscopy. It was found the viability and motility of RAW-DEN hybrids remained the same as untreated RAW cells. Furthermore, azido sugar and dendrimer treatment showed no effect on intracellular AKT, p38, and NFÎşB (p65) signaling, indicating that the hybridization process neither induced cell stress response nor altered normal signaling. This work shows the feasibility of applying bioorthogonal chemistry to create cell-nanoparticle hybrids and demonstrates the noninvasiveness of this cell surface engineering approach.
In summary, these studies indicate surface-modification of PAMAM dendrimer G4 with FA can effectively target at FR-positive cells and subsequently enhance in vitro transfection efficiency and in vivo gene delivery. G4-FA conjugates may serve as a versatile targeted gene delivery carrier potentially for cancer gene therapy. PAMAM dendrimers G4.5 may serve as a drug delivery carrier for the controlled release of chemotherapeutics. The immune cell-dendrimer hybrids via bioorthogonal chemistry may serve as an innovative drug and gene delivery carrier potentially for cancer chemotherapy. Taken together, engineering of PAMAM dendrimers may advance anticancer drug and gene delivery
Targeting Drug Resistance in Chronic Myeloid Leukemia: A Dissertation
Inhibiting BCR-ABL kinase activity with tyrosine kinase inhibitors (TKIs) has been the frontline therapy for CML. Resistance to TKIs frequently occurs, but the mechanisms remain elusive.
First, to uncover survival pathways involved in TKI resistance in CML, I conducted a genome-wide RNAi screen in human CML cells to identify genes governing cellular sensitivity to the first generation TKI called IM (Gleevec). I identified genes converging on and activating the MEK/ERK pathway through transcriptional up-regulation of PRKCH. Combining IM with a MEK inhibitor synergistically kills TKI-resistant CML cells and CML stem cells.
Next, I performed single cell RNA-seq to compare expression profiles of CML stem cells and hematopoietic stem cells isolated from the same patient. Among the genes that are preferentially expressed in CML stem cells is PIM2, which encodes a pro-survival serine-threonine kinase that phosphorylates and inhibits the pro-apoptotic protein BAD. Inhibiting PIM2 function sensitizes CML stem cells to IM-induced apoptosis and prevents disease relapse in a CML mouse model.
Last, I devised a CRISPR-Cas9 based strategy to perform insertional mutagenesis at a defined genomic location in murine hematopoietic Ba/F3 cells. As proof of principle, we showed its capability to perform unbiased, saturated point mutagenesis in a 9 amino acid region of BCR-ABL encompassing the socalled “gatekeeper” residue, an important determinant of TKI binding. We found that the ranking order of mutations from the screen correlated well with their prevalence in IM-resistant CML patients.
Overall, my findings reveal novel resistance mechanisms in CML and provide alternative therapeutic strategies
An optimization framework for solving capacitated multi-level lot-sizing problems with backlogging
This paper proposes two new mixed integer programming models for capacitated multi-level lot-sizing problems with backlogging, whose linear programming relaxations provide good lower bounds on the optimal solution value. We show that both of these strong formulations yield the same lower bounds. In addition to these theoretical results, we propose a new, effective optimization framework that achieves high quality solutions in reasonable computational time. Computational results show that the proposed optimization framework is superior to other well-known approaches on several important performance dimensions
- …