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Abstract

ENGINEERING OF POLYAMIDOAMINE DENDRIMERS FOR CANCER

THERAPY

by Leyuan Xu

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University

Virginia Commonwealth University, 2015

Major Director: Hu Yang, Ph.D., Associate Professor, Biomedical Engineering

Dendrimers are a class of polymers with a highly branched, three-dimensional ar-

chitecture comprised of an initiator core, several interior layers of repeating units,

and multiple active surface terminal groups. Dendrimers have been recognized as the

most versatile compositionally and structurally controlled nanoscale building blocks

for drug and gene delivery. Polyamidoamine (PAMAM) dendrimers have been most

investigated because of their unique structures and properties. Polycationic PAMAM

dendrimers form compacted polyplexes with nucleic acids at physiological pH, holding

great potential for gene delivery.

Folate receptor (FRα) is expressed at very low levels in normal tissues but

expressed at high levels in cancers in order to meet the folate demand of rapidly

dividing cells under low folate conditions. Our primary aim was to investigate folic

acid (FA)-conjugated PAMAM dendrimer generation 4 (G4) conjugates (G4-FA) for

targeted gene delivery. The in vitro cellular uptake and transfection efficiency of G4-

FA conjugates and G4-FA/DNA polyplexes were investigated in Chapter 4. It was

found the cellular uptake of G4-FA conjugates and G4-FA/DNA polyplexes was in a

FR-dependent manner. Free FA competitively inhibited the cellular uptake of G4-FA
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conjugates and G4-FA/DNA polyplexes. G4-FA/DNA polyplexes were preferentially

taken up by FR-positive HN12 cells but not FR-negative U87 cells. In contrast,

the cellular uptake of G4 dendrimers and G4/DNA polyplexes was non-selective via

absorptive endocytosis. G4-FA conjugates significantly enhanced cytocompatibility

and transfection efficiency compared to G4 dendrimers. This work demonstrates that

G4-FA conjugates allow FR-targeted gene delivery, reduce cytotoxicity, and enhance

gene transfection efficiency.

The in vivo biodistribution of G4-FA conjugates and anticancer efficacy of G4-

FA/siRNA polyplexes were investigated in Chapter 5. Vascular endothelial growth

factor A (VEGFA) is one of the major regulators of angiogenesis, essential for the

tumor development. It was found G4-FA/siVEGFA polyplexes significantly knocked

down VEGFA mRNA expression and protein release in HN12 cells. In the HN12

tumor-bearing nude mice, G4-FA conjugates were preferentially taken up by the tu-

mor and retained in the tumor for at least 21 days following intratumoral (i.t.) admin-

istration. Two-dose i.t. administration of G4-FA/siVEGFA polyplexes significantly

inhibited tumor growth by lowering tumor angiogenesis. In contrast, two-dose i.t.

administration of G4/siVEGFA polyplexes caused severe skin lesion, presumably as

a result of local toxicity. Taken together, this work shows great potential for the use

of G4-FA conjugates in targeted gene delivery and cancer gene therapy.

We also explored polyanionic PAMAM dendrimer G4.5 as the underlying car-

rier to carry camptothecin (CPT) for glioblastoma multiforme therapyin Chapter 6.

“Click chemistry was applied to improve polymer-drug coupling reaction efficiency.

The CPT-conjugate displayed a dose-dependent toxicity with an IC50 of 5 µM, a

185-fold increase relative to free CPT, presumably as a result of slow release. The

conjugated CPT resulted in G2/M arrest and cell death while the dendrimer itself

had little to no toxicity. This work indicates highly efficient “click chemistry allows

for the synthesis of multifunctional dendrimers for sustained drug delivery.

Immobilizing PAMAM dendrimers to the cell surface may represent an inno-

vative method of enhancing cell surface loading capacity to deliver therapeutic and

imaging agents. In Chapter 7, macrophage RAW264.7 (RAW) was hybridized with
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PAMAM dendrimer G4.0 (DEN) on the basis of bioorthogonal chemistry. Efficient

and selective cell surface immobilization of dendrimers was confirmed by confocal mi-

croscopy. It was found the viability and motility of RAW-DEN hybrids remained the

same as untreated RAW cells. Furthermore, azido sugar and dendrimer treatment

showed no effect on intracellular AKT, p38, and NFκB (p65) signaling, indicating

that the hybridization process neither induced cell stress response nor altered nor-

mal signaling. This work shows the feasibility of applying bioorthogonal chemistry

to create cell-nanoparticle hybrids and demonstrates the noninvasiveness of this cell

surface engineering approach.

In summary, these studies indicate surface-modification of PAMAM dendrimer

G4 with FA can effectively target at FR-positive cells and subsequently enhance in

vitro transfection efficiency and in vivo gene delivery. G4-FA conjugates may serve

as a versatile targeted gene delivery carrier potentially for cancer gene therapy. PA-

MAM dendrimers G4.5 may serve as a drug delivery carrier for the controlled release

of chemotherapeutics. The immune cell-dendrimer hybrids via bioorthogonal chem-

istry may serve as an innovative drug and gene delivery carrier potentially for cancer

chemotherapy. Taken together, engineering of PAMAM dendrimers may advance

anticancer drug and gene delivery.



Chapter 1

Background and Significance

1.1 Head and neck squamous cell carcinoma (HN-

SCC)

Cancer, also known as a malignancy, is an abnormal growth of cells. In the body,

normal cells grow, divide, and die in an orderly way. In contrast, cancer cells grow out

of control. Instead of undergoing a normal cell cycle, cancer cells continue to grow and

divide to make new abnormal cells. Moreover, cancer cells can invade other tissues.

Cells become cancer cells mainly because of DNA damage or mutation. When DNA

is damaged, normal cells either repair the damage or die. However, cancer cells do

not repair the damaged DNA and do not die as they should. Instead, the cancer cells

divide to make daughter abnormal cells, which contain the same damaged DNA as

their parental cells do. Generally, the cancer cells form a tumor. Over time, tumors

can replace normal tissue and push it aside. Some cancers, like leukemia, rarely form

tumors. However, those abnormal white blood cells grow as they circulate through

tissues.

To date, there are more than 100 types of cancer, including breast cancer,

skin cancer, lung cancer, colon cancer, lymphoma, etc. Head and neck cancer in-

cludes malignancies arising in the mucosal surfaces of the oral cavity, pharynx, lar-

ynx, paranasal sinuses, and nasal cavity, and is generally referred to as head and

1



neck squamous cell carcinoma (HNSCC). HNSCC is estimated to have 53,640 new

cases in US in 2013, accounting for 3% of all cancers [49]. HNSCC is the sixth most

prevalent cancers in mankind, and presents high morbidity and low rates of survival

[22]. Risk factors for HNSCC include exposure to tobacco and alcohol. At least 75

percent of head and neck cancers are caused by tobacco and alcohol use [179]. Infec-

tion with cancer-causing types of human papillomavirus (HPV) is another risk factor

for some typescertain types of HNSCC. Particularly, such as oropharyngeal cancers

involve the tonsils or the base of the tongue [70, 2, 27]. In the US, the incidence of

oropharyngeal cancers caused by HPV infection is increasing, whereas the incidence

of oropharyngeal cancers related to other causes is falling [27]. Other risk factors

for HNSCC include paan (betel quid), mate, preserved or salted foods, oral health,

occupational exposure, radiation exposure, Epstein-Barr virus infection, and ancestry

[87, 212, 164, 79, 176, 72].

Treatment of HNSCC frequently requires multi-modality intervention involv-

ing surgical, medical, and radiation therapy. With improvements in radiation therapy

and chemotherapy, organ-conserving treatments are increasingly employed to preserve

speech, swallowing, and other regional functions [124]. These conventional therapies

have been used for decades in HNSCC but they have limitations. Surgery may cause

disfigurement, change patient’s ability to chew, swallow, and talk, all of which reduce

patient quality of life. After a laryngectomy or other surgery in the neck, parts of

the neck and throat may feel numb because nerves have been cut. After removal of

lymph nodes in the neck, the shoulder and neck may become weak and stiff. Radia-

tion may cause redness, irritation, and sores in the mouth, a dry mouth or thickened

saliva, difficulty in swallowing, changes in taste, nausea, loss of taste, and earaches

[182]. Concurrent chemotherapy and radiation in HNSCC likely provides a better

outcome in terms of local disease control and organ preservation compared to radi-

ation alone or radiation plus induction chemotherapy, but concurrent therapy also

leads to more severe toxicity [57]. Patients may also experience other side effects

including dysphagia, xerostomia, radiation dermatitis, hematologic toxicity, neuro-

toxicity and/or ototoxicity, moist desquamation, nausea or vomiting, fever, weight

2



loss, fatigue, pneumonia and osteoradionecrosis, combinations of which may lead to

termination of treatment or even death [264]. The toxicities of conventional therapies

are in large part due to their non-selective nature. Molecular targeted therapies are

therefore in development with the goal of developing selective approaches to inhibit

the growth of HNSCC cells.

1.2 Anticancer drugs

Anticancer drugs can be broadly divided into three generations (Figure 1.1 ). The

first-generation anticancer drugs are traditional anticancer chemotherapeutics, which

mainly block DNA replication and cell division. These anticancer drugs have proved

to be potent in treating some cancers, but they have severe side effects. These an-

ticancer drugs can cause substantial toxicity to both normal cells and cancer cells.

Therefore, they compromise not only the rapidly dividing cells of hematopoietic sys-

tem, the gut and hair follicles, but also the function of post-mitotic tissues such as the

heart muscle and peripheral nerves. The second-generation anticancer drugs target

signaling intermediates that contribute to cancer growth. These signaling interme-

diates are oncoproteins that are primary products of gene fusions, gain-of-function

mutations or overexpressed oncogenes. These anticancer drugs have shown to in-

creased specificity and hereby reduce side effects, but they have limitations such as

the development of acquired drug resistance, which often leads to relapse. The third-

generation anticancer drugs are designed to target cellular machineries. Although

they are not directly involved in DNA replication or cell division, they are essential

for tumor growth and survival. However, a lack of absolute specificity for cancer cells

will inevitably cause side effects [46].

Antibody-drug conjugates (ADCs) are a new class of highly potent biophar-

maceutical drug, and become now one of the most active areas in anticancer drug

development [46]. Brentuximab vedotin (trade name: Adcetris, marketed by Seat-

tle Genetics and Millennium/Takeda) and ado-trastuzumab emtansine (trade name:

3



Figure 1.1: Cellular multicomponent machineries as current and future
targets for anticancer drugs.
Current targets and future targets are illustrated in red and blue boxes, respectively.
(Reproduced reference [46]. Copyright 2014 Macmillan Publishers Ltd.)
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Kadcyla, marketed by Genentech and Roche) are marketed ADCs. Brentuximab

vedotin is a conjugate of a CD30 specific antibody and five units of the antimi-

totic agent monomethyl auristatin E (MMAE) via a cathepsin cleavable linker. The

peptide-based linker between the CD30 antibody and the MMAE is stable under

physiologic conditions, helping prevent toxicity to healthy cells and ensure dosage

efficiency. The antibody of brentuximab vedotin binds to CD30, which often oc-

curs on tumor cells but rarely on normal tissues. Once bound, brentuximab vedotin

is selectively taken up by tumor cells and internalized through endocytosis. The

peptide-based linker is cleaved in lysosomes, which contain lysosomal cysteine pro-

teases, particularly cathepsin B. MMAE is then rapidly released from the conjugate

within the tumor cell. Brentuximab vedotin has showed promising results in Phase II

trials for the treatment of patients with Hodgkin disease and patients with anaplastic

large cell lymphoma [59, 316]. Ado-trastuzumab emtansine is a conjugate of a HER2

specific antibody and a cytotoxic maytansinoid (DM1) via a short heterobifunctional

crosslinker. Ado-trastuzumab emtansine has shown clinical benefits for patients who

had previously shown tumor progression with trastuzumab treatment [185, 268]. This

approach combines the broad activity of first-generation anticancer drugs with an

enhanced specificity for tumor cells [46]. However, severe side effects and drug resis-

tance may arise for ADCs. Besides most common adverse reactions such as digestive

distress, balding, digestive distress, nausea, vomiting, loss of appetite, anxiety, and

depression, some severe adverse events identified in the ado-trastuzumab emtansine

clinical trial included hepatotoxicity, heart failure, interstitial lung disease, thrombo-

cytopenia, and peripheral neuropathy [129, 12].

Drug delivery systems have advanced over the last half century. Numerous

drug delivery systems and controlled release formulations have been developed and

used in clinical applications [133]. In particular, tumor-targeting drug delivery has

received great attention, partly due to the emergence of nanomedicine.
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1.3 Nanomedicine

Nanomedicine is the biomedical and pharmaceutical application of nanotechnology for

making nanocarriers of therapeutics and imaging agents, nanoelectronic biosensors,

and nanodevices. A number of nanocarrier delivery systems, including dendrimers

[100, 101, 103, 150], liposomes [24, 64], polymeric micelles [231, 326], linear polymers

[253, 338], quantum dots [18, 67], and iron oxide nanoparticles [54, 178], have been

developed and have demonstrated promising properties in targeted drug delivery.

1.3.1 Liposomes

Liposomes are non-toxic, biocompatible and biodegradable carriers that are made

up of lipid bilayers, typically phospholipid bilayers. A common method for liposome

preparation is oil-in-water (o/w) emulsification, in which the oil phase is dispersed as

the droplets of submicron size and then stabilized by surfactants. Liposomes made by

o/w are suitable for delivery of lipophilic drugs. Liposomes can deliver hydrophilic,

lipophilic and amphoteric drug molecules, which are entrapped either inside the car-

rier or on the micellar surface. However, liposomes have such problems as short

clearance time and low transport rate. Liposomes with specificity may mitigate these

disadvantages. For instance, liposomes surface modified with targeting ligands may

facilitate encapsulated drug molecules to the target tissue or organ. Targeting lig-

ands include monoclonal antibody (mAb) (e.g. mAb against transferrin receptor),

cationized proteins (e.g. albumin), endogenous peptides or plasma proteins. Liposo-

mal systems have been developed and evaluated for delivery of various drugs, such as

chemotherapeutic compounds, antiretrovirals, anti-epilepsy drugs and anti-ischemia

drugs. The mechanism for liposomes coupled with brain-targeting ligand to enter the

brain through absorption- or receptor-mediated transcytosis. Liposome structural

parameters such as surface charge, site membrane lipid packing and extent of steric

stabilization can be modulated to prolong liposome circulation in the blood. In addi-

tion, polymers such as polypropylene oxide (PEO) and polyethylene glycol (PEG) as

surface modifier help extend liposome circulation time, as a result of enhanced steric
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stability, reduced phagocytosis, and weakened interaction between serum opsonins

[305, 295, 4, 223, 286, 295].

1.3.2 Polymeric NPs

Synthetic and natural polymers with different structures (linear, branched, or den-

dritic) have attracted considerable attention for biomedical applications including

CNS drug delivery. In general, polymers used for drug delivery are expected to

possess biocompatibility, drug loading capacity, suitable biodegradation kinetics and

mechanical properties and ease of processing [1]. Examples include poly(alkyla-

cyano acrylates), poly(amino aicds), poly(acrylamides), poly(amides), ploy(esters),

poly(orthoesters) and poly(urethanes). Aliphatic poly(esters) such as polylactic acid

(PLA), polyglycolic acid (PGA), and copolymer poly(lactic-co-glycolic acid) (PLGA)

have spurred tremendous interest in biomedical applications because of their excellent

biocompatibility and biodegradability. PLGA degrades in the body through hydroly-

sis and breaks down into non-toxic lactic acid and glycolic acid monomers, which can

be efficiently eliminated from the body. By virtue of their safety, PLGA copolymers

have been approved by the FDA for the use in drug delivery. PLGA are commonly

denoted by the molar ratio of lactic acid (LA) to glycolic acid (GA) in the polymer.

The degradation rate of PLGA depends on several factors: the molar ratio of LA

to GA, molecular weight of copolymer, degree of crystallinity and glass transition

temperature (Tg) of the polymer [295, 1]. Single- and double-emulsion-solvent evap-

oration methods are most used to prepare PLGA NPs. The single-emulsion method is

essentially o/w emulsification; whereas the double-emulsion process is water-in-oil-in-

water (w/o/w) emulsification. The o/w emulsification method is ideal for hydropho-

bic lipophilic drug encapsulation, whereas the w/o/w emulsification method is more

suitable for hydrophilic drug encapsulation. The solid/oil/water (s/o/w) emulsifica-

tion method has been developed to utilize PLGA-based microspheres to deliver large

amounts of hydrophilic peptides, such as insulin [295, 163].
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1.3.3 Dendrimers

Dendrimers exhibit a highly branched, three-dimensional architecture and comprise

an initiator core, interior layers, and a number of terminal groups. The branches and

surface groups of dendrimers increase exponentially in number with the generation

(G) of the dendrimers, whereas the diameter of dendrimers increases by about 1 nm

with the generation, as shown in Figure 1.2 [262]. Dendrimers possess very low poly-

dispersity and high functionality. The presence of numerous surface groups and a

hydrophobic core allows for a high drug payload and multifunctionality [173, 105].

Dendrimers have been recognized as one of the most versatile compositionally and

structurally controlled nanoscale building blocks. Dendrimers have received consider-

able attention in cancer drug delivery because of their capability of their advantages

including (1) maintaining drug levels in a therapeutically desirable range, (2) increas-

ing half-lives, (3) increasing solubility of drugs, (4) delivering a variety of drugs, (5)

facilitating passage across biological barriers by transcytosis, (6) enabling rapid cel-

lular entry, and (7) reducing side effects by targeted delivery [286, 173, 187, 297].

Dendrimers are capable to facilitate the transport of therapeutics across various cell

membranes or biological barriers via different mechanisms such as modulation of tight

junction proteins such as occludin and actin. However, such an event is reversible de-

pending on the dose, generation, and surface charge of the dendrimers [297, 296, 222].

Surface groups and the molecular mass of dendrimers determine the dynamics

of cellular entry [296]. The mechanism of a dendrimer-mediated drug-delivery system

is illustrated in Figure 1.3. The internalization of dendrimers occurs mainly through

a clathrin- and caveolae-mediated energy-dependentendocytosis and partly through

marcopinocytosis [115, 160]. Dendrimers can then function as a proton sponge to

facilitate the escape from endosomes and lysosomes. The proton sponge mechanism

occurs because dendrimers contain a large number of secondary and tertiary amines.

These amines enable the absorption of protons released from ATPase and subse-

quently cause osmotic swelling and rupture of the endosome membrane to release the
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Figure 1.2: Schematic presentation of dendrimers as a nanoscaffold with
a core, interior, and surface.
Abbreviations: G, generation; Z, surface group for host-guest interactions and func-
tionalization. (Reproduced reference [297]. Copyright 2014 American Chemical So-
ciety.)

entrapped dendrimers [297, 242].

A variety of compositionally differentiated dendrimers have been exploited for

drug delivery and imaging, including poly(amidoamine) (PAMAM), poly(etherhydro-

xylamine) (PEHAM), and poly(propyleneimine) (PPI) dendrimers [173]. Among

these, PAMAM dendrimers have been the most investigated because of their unique

structures and properties [296]. A full-generation PAMAM dendrimer is a poly-

cationic dendrimer that presents primary amines on the surface, whereas a half-

generation PAMAM dendrimer is a polyanionic dendrimer that presents carboxylic

acids on the surface. Polycationic dendrimers are able to form compacted polyplexes

with nucleic acids at physiological pH, which can be used for gene delivery [206, 225],

whereas polyanionic dendrimers have anionic surface that are ideal for cationic drugs

or for reversible coordination to platinum complexes [123]. Both polycationic and

polyanionic dendrimers possess extremely high mucosal-serosal transfer rates, but

polyanionic dendrimers are generally less toxic than polycationic dendrimers [297, 50].

The synthesis of PAMAM dendrimer nanocarriers suitable for targeting delivery of

therapeutics involves four steps, as illustrated in Figure 1.4 [297]. First, dendrimers

are modified with spacers or linkages on the surface to improve biocompatibility,
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Figure 1.3: Mechanism of dendrimer-mediated intracellular delivery of
therapeutics such asdoxorubicin (DOX) and camptothecin (CPT).
(1) Dendrimer nanomedicine is attracted to the cells by an electrostatic difference; (2)
Ligand-receptor-mediated endocytosis occurs, and dendrimer nanomedicine is inter-
nalized into the cells; (3) reduction of the pH value from the endocytic vesicle to the
lysosome triggers therapeutics to be cleaved from the dendrimer carrier and released
into the cytoplasm; (5) released therapeutics diffuse into the nucleus, intercalate the
DNA strand, and break the DNA chain to prevent its replication. (Reproduced ref-
erence [297]. Copyright 2014 American Chemical Society.)
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buffering capacity, half-life, and drug-release kinetics. Second, specific ligands are

conjugated to the surface-modified dendrimers for tumor targeting. Third, drug or

gene therapeutics are bioconjugated or complexed with the surfaced-modified den-

drimers. Notice that steps 2 and 3 can be switched depending on particular circum-

stances. Fourth, imaging agents can be covalently conjugated onto the dendrimer

nanocarriers, allowing for the tracking of biodistribution and providing a modality

for in vivo imaging and diagnosis [297].
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Figure 1.4: Dendrimer platform for targeted delivery of therapeutics and
imaging reagents.
(1) Full-generation PAMAM dendrimer is reacted with NHS-PEG-MAL to express
MAL on the surface. (2) Targeting ligands are reacted with MAL of the dendrimer to
form a PAMAM-PEG-ligand nanoparticle. (3) Hydrophobic or gene therapeutics can
be entrapped inside of the dendrimer core via hydrophobicity or electrostatics. (4)
Hydrophilic or hydrophobic therapeutics can also be covalent conjugated onto den-
drimer surface. (5) Imaging reagents are reacted with MAL of the dendrimer to form
a PAMAM-PEG-drug-ligands-imaging reagent nanoparticle. Abbreviation: NHS, N-
hydroxysuccinimide; MAL, maleimide; PEG, poly-(ethylene glycol); Tf, transferrin;
EGF, epidermal growth factor; DOX, doxorubicin; FITC, fluorescein isothiocyanate;
AAF, N-acetyl-2-aminofluorene; CPT, camptothecin. (Reproduced reference [297].
Copyright 2014 American Chemical Society.)
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Chapter 2

Dendrimer-Based RNA

Interference Delivery for Cancer

Therapy: A Literature Review

Preface: This chapter has been published as a book chapter.

Leyuan Xu, W. Andrew Yeudall, Hu Yang

Tailored Polymer Architectures for Pharmaceutical and Biomedical Applica-

tions (Chapter 12), American Chemical Society Symposium Series: 2013; Volume

1135, pages 197-213.

2.1 Abstract

RNA interference (RNAi) has emerged as a promising tool for cancer treatment. A

strenuous ongoing effort for translation of RNAi into clinically acceptable therapy is

the development of vectors for efficient and targeted RNAi delivery. In this chap-

ter, we review RNAi-based cancer treatment and the utility of dendrimers in RNAi

delivery.

13



2.2 Introduction

To date, small-molecular-weight drugs remain dominant on the pharmaceutical mar-

ket. In general, they interact with proteins such as enzymes within the cell or receptors

on the cell surface to exert their desired therapeutic activities for treatment of various

diseases. As for cancer chemotherapy, most of anticancer drugs are designed to be

cytotoxic and induce apoptosis in cells. Nonetheless, lack of tumor specificity and

acquisition of drug resistance are common problems associated with anticancer drugs

and cause poor clinical outcomes. It is an important approach to modify existing

drugs to improve their specificity and potency. Although discovery and development

of new cytotoxic agents for cancer therapy remains a key focus, advances in funda-

mental understanding of cancer biology and identification of molecular targets have

brought about new concepts in anticancer drug design and paved the way for develop-

ment of molecularly targeted therapeutics. A paradigm shift in design of anticancer

therapeutics has been brought about by a groundbreaking discovery-RNA interfer-

ence (RNAi) [55]. In this chapter, we review RNAi for cancer treatment as well as the

latest progress in RNAi delivery on the basis of dendrimers, which are an important

class of macromolecules possessing highly branched nanoscale architectures with a

high density of terminal groups on the surface.

2.3 Brief Overview of RNAi

RNAi refers to the process of gene silencing (Figure 2.1) [204]. In eukaryotic cells,

the RNA endonucleases Drosha and Dicer recognize and cleave double-stranded RNA

(dsRNA) into short double-stranded segment (∼20-25 nt), which are known as small

interfering RNA (siRNA) duplex, composed of a sense strand and an antisense strand.

The siRNA duplex is phosphorylated at the 5’ end and hydroxylated at the 3’ end

with two nucleotides overhung and, in turn, contributes to formation of the pre-

RNA-induced silencing complex (pre-RISC), which includes (in mammals) one of

four Argonaute proteins (AGO1-4) [114]. Within the pre-RISC, the siRNA duplex is
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Figure 2.1: Mechanism of RNAi following intracellular dsRNA delivery.
(Reproduced from reference [204]. Copyright 2011 Macmillan Publishers Ltd.)

unwound, the sense strand is degraded, and the antisense or guide strand is integrated

into the RISC. Once the bound siRNA within the RISC recognizes and hybridizes to

its complementary messenger RNA (mRNA), the specific nucleases in the RISC then

cleave the mRNA/siRNA hybrid. Subsequently, the cleaved mRNA is destroyed by

the cells. Naturally, as mRNA encodes information for production of cellular proteins,

its degradation induced by RNAi directly reduces expression of the corresponding

protein [208].

For experimental (and therapeutic) purposes, two methods are commonly used

to produce siRNAs. The first is to synthesize a dsRNA corresponding to the chosen

sequence within the target gene. This dsRNA is then inserted into the cell, usually

by transfection by any of the standard methods available. An alternative method is
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to generate a dsRNA corresponding to the target sequence in vivo from a precursor

small hairpin RNA (shRNA). This involves synthesis of a double-stranded DNA of

around 70bp, which is designed to contain tandem segments of both sense and anti-

sense sequences corresponding to the target gene. This is ligated into a eukaryotic

expression vector downstream of a suitable promoter (e.g., U6), and is delivered to

the cell. Once the vector is present in the cell and transcribed in the nucleus, it forms

a dsRNA in a hairpin structure. This shRNA is transported into the cytoplasm and

is processed, leading to the generation of a functional RISC.

2.4 RNAi in Cancer Therapy

Cell surface receptors such as receptor tyrosine kinases, anti-apoptotic genes, survival

factors or key participants in signaling pathways are essential for processes such as

cell division, proliferation, survival and migration [208]. Constant activation of these

signaling pathways or overexpression of signaling molecules can lead to unchecked cell

proliferation and migration, resulting in tumorigenesis.

Ligands such as epidermal growth factor (EGF) stimulate EGFR dimerization

and activate the intrinsic intracellular tyrosine kinase activity of the receptor (Figure

2.2) [125]. This activation event enables recruitment of SH2-containing proteins to

phosphotyrosine residues in the cytoplasmic portion of the receptor, including the

adapter protein Grb2, phosphoinositide 3-OH kinase (PI3K) and phospholipase C

[211]. These mediators trigger multiple signal transduction pathways such as MAPK,

Akt and JNK pathways, leading to DNA synthesis and cell proliferation. EGFR

overexpression on tumor cells, or mutation, can lead to hyperactivation and result in

uncontrolled cell division that is characteristic of malignant disease. Based on the

proposed role of EGFR as an oncoprotein, several anticancer therapeutics directly

against EGFR have been developed, including the small molecule inhibitors Gefitinib

and Erlotinib and the anti-EGFR antibody, Cetuximab, which have shown some

utility in the treatment of several human cancers. In addition, EGFR-mediated drug

delivery systems can be taken up more selectively by EGFR positive cells via EGFR-
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Figure 2.2: The epidermal growth factor receptor signaling pathway.
(Reproduced from reference [125]. Copyright 2010 Macmillan Publishers Ltd.)

dependent endocytosis [320].

Inhibiting EGFR signaling or blocking its pathway intermediates during car-

cinogenesis offers a new strategy to treat cancer. For instance, Wang et al. reported

the role of a signaling intermediate, EPS8, in human head and neck squamous cell

carcinoma (HNSCC) progression [273, 272]. Overexpression of EPS8 in tumor cells

results in increased cell proliferation and migration along with elevated expression

of matrix metalloprotease MMP-9, which is dependent on protein kinase B (Akt)

activity. They found that EPS8 knockdown decreases tumorigenicity and MMP-9

expression. Furthermore, in clinical samples of squamous cell carcinoma, EPS8 ex-

pression was observed at elevated levels and correlated to MMP-9 expression (Figure
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2.3) [273, 272]. Therefore, EPS8 may be a good candidate target for RNAi in the

treatment of some cancers. In fact, a variety of molecular targets (Table 2.1) have been

identified and RNAi knockdown of those targets has been investigated for treating a

broad spectrum of cancers including liver cancer, prostate cancer, etc [191]. These

delivery systems have been shown to improve siRNA stability and cancer-specificity,

thus minimizing off-target and nonspecific immune stimulations.

Currently, clinical trials are ongoing to tackle cancer via RNAi-based gene ther-

apies. Trial CALAA-01, acclaimed as the first targeted delivery of siRNA in humans

[39], examined a targeted delivery system to deliver siRNA to reduce expression of

the M2 subunit of ribonucleotide reductase (R2) (RRM2) to achieve inhibition of tu-

mor growth. The R2 siRNA was complexed with cationic cyclodextrin and stabilized

with adamantane polyethylene glycol (AD-PEG). A targeting ligand, human trans-

ferrin (Tf), was coupled to AD-PEG for selective delivery and enhanced uptake via

transferrin receptor-mediated endocytosis [40]. The evidence suggests that system-

atic administration of siRNA can result in specific gene (RRM2) inhibition at both

mRNA and protein levels at the site predicted for an RNAi mechanism of action.

Analysis of tumor biopsies from melanoma patients following the treatment revealed

that amounts of nanoparticles accumulated intracellularly correlated well with doses

of nanoparticles administered.

Another trial evaluated bi-shRNA-furin and granulocyte macrophage colony

stimulating factor (GM-CSF) augmented autologous tumor cell vaccine for advanced

cancer (FANG). The FANG vector was introduced to autologous tumor cells ex-vivo

by electroporation, enabling transcription of the bi-shRNA furin and expression of

the GM-CSF protein. Transfected tumor cells were irradiated, aliquoted, and cryop-

reserved until the time of injection (13). Autologous FANG vaccine produced both

recombinant human GM-CSF(rhGMCSF) and bi-shRNAfurin. The GM-CSF pro-

tein helped recruit immune effectors to the site of intradermal injection and promote

antigen presentation, while bi-shRNAfurin inhibited furin protein production at the

post transcriptional and translational levels and consequently decreased both TGFβ1
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Figure 2.3: Overexpression of EPS8 potentiates AKT activation in a PI3K-
dependent manner, resulting in elevated transcription of MMP9 by a yet-
to-be-determined mechanism.
This results in enhanced MMP-9 activity, which is available to participate in degra-
dation of extracellular matrix, thereby enhancing invasion. MMP-9 may also process
growth factors, cytokines and chemokines, further stimulating cell growth and motil-
ity. (Reproduced from reference [272]. Copyright 2009 Oxford University Press.)
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Table 2.1: RNAi for Cancer Therapy. SOURCE: adapted from reference
[191]. Copyright 2009 Elsevier

Cancer type Target gene Administration
Route

Ref(s).

Liver Bcl-2 i.v. [312]
Prostate Integrin v i.t. [17]

CD31 i.v. [226]
Bcl-2 i.t. [312]
Raf-1 i.v. [194]

Breast c-raf i.v. [34]
RhoA i.v. [302]
Her-2 i.v. [91]

Ovarian EphA2 i.v./i.p. [135,
136]

FAK i.p. [86]
ADRB2 i.p. [257]
IL-8 i.p. [174]
Her-2 i.p. [265]

Lung EGFR i.v. [166]
Akt1 Inhalation [290]
TERT i.t. [333]

Gastric VEGF i.t. [90]
Nasopharyngeal Her-2 i.t. [315]
Glioblastoma PTN i.c. [78]
Cervical HPV18 type E6 and E7 i.t. [62]
Metastatic Ewings
sarcoma

EWS-FLI1 i.v. [96]

Melanoma c-myc, MDM2, VEGF i.t./i.v. [243]
EGFP i.t. [75]

Abbreviations: i.v., intravenous; i.p., intraperitoneral; i.t., intratumoral; i.c.,
intracerebral
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and TGFβ2 expression. As a result of the phase I trial, local immunosuppression

was reduced and tumor antigens and major histocompatibility complex (MHC) pro-

teins promoted. Phase II trial in advanced melanoma has begun recently to examine

immune responses to FANG.

2.5 Challenges to RNAi Therapy

In spite of high gene silencing potency, RNAi can cause specific and non-specific off-

target effects. Specific off-target effects are usually caused by unintended suppression

of an unrelated mRNA due to a certain degree of siRNA complementarity to unin-

tended mRNAs. Nonspecific off-target effects include activating an immune response

and toxicity (activation of Toll-like receptors) triggered directly by the siRNA/shRNA

plasmid itself or the delivery system [107, 217].

In addition to the off-target effects that impede therapeutic efficacy, barriers

exist that reduce bioavailability of RNAi therapeutics. First, RNA encounters RNA-

degrading ribonucleases present in the extracellular fluids during transport. Second,

RNA may be absorbed nonspecifically by the liver, accessible mucosal surfaces, or

body cavities [208]. Third, RNA by itself has no specificity towards target cells and

hardly enters the cell due to the presence of negative charges on the cell surface.

To address the barriers facing RNAi therapy, the use of vectors to deliver

RNAi therapeutics has become an important approach. Vectors are expected to

protect these molecules from degradation, reduce non-specific absorption, enhance

cellular uptake and specificity, and facilitate transfection. As such, vectors need to

be biocompatible and nonimmunogenic. In general, vectors are divided into two cat-

egories: viral vectors and synthetic vectors. Viral vectors have evolved functions

to enter cells efficiently, but safety concerns have restricted their practical applica-

tion. Synthetic vectors, particularly cationic polymers [152, 167, 42], have attracted

considerable attention for gene transfer as they can potentially avoid toxicity and im-

munogenicity, provide high carrying capacity, achieve prolonged delivery, and allow

low-cost manufacturing [193, 165]. Nonetheless, delivery efficiency of synthetic vec-
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tors for RNAi therapy is affected by factors such as assembly of nucleic acid/vector

polyplexes, specificity,uptake, endosomal escape, disassembly of polyplexes, and sta-

bility of siRNA in the cytoplasm [165]. Endocytosis is a process involving multiple

steps: binding, internalization, formation of endosomes, fusion with lysosomes, and

lysis [219]. Following endocytosis, endosomal escape is an important step that affects

transfection efficiency.

In the past, a variety of synthetic vectors have been developed or studied

to deliver DNA plasmids. Those vectors can be readily applied to deliver RNAi

therapeutics in that both types of genetic material are packaged with vectors through

electrostatic interactions. Because of the distinct tumor microenvironment and the

unique surface characteristics of cancer cells, e.g., overexpression of EGFR, it seems

practical to develop vectors to deliver RNAi molecules specifically to tumors through

targeted delivery to avoid undesirable gene silencing effects on normal cells.

2.6 Dendrimers for RNAi Delivery

Numerous types of synthetic vectors and nanoparticulate delivery systems have been

developed for delivery of nucleic acids including DNA and RNA. In this chapter, we

review RNAi delivery on the basis of one important class of nanovectors, namely

dendrimers.

2.6.1 Structures and Properties of Dendrimers

Different from traditional polymers, dendrimers have a highly branched, three-dimen-

sional architecture with very low polydispersity and high functionality, comprising an

initiator core, several interior layers composed of repeating units, and multiple active

terminal groups (Figure 2.4) [158, 53, 184, 249]. The number of branches and surface

groups increase exponentially with increasing generation (G). The presence of numer-

ous surface groups allows for high drug payload and multifunctionality. Dendrimer

toxicity is generation- and dose dependent [306]. Higher generations tend to be more

toxic and carboxylate-or hydroxyl-terminated PAMAM dendrimers are more cyto-
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Figure 2.4: Schematic presentation of dendrimers as nano-scaffold for the
attachment of cell-specific ligands, modifiers, and fluorescence tags.
Abbreviation: G: generation. (Reproduced from reference [249]. Copyright 2005
Elsevier)

compatible than amine-terminated dendrimers. Dendrimers have been recognized

as the most versatile compositionally and structurally controlled nanoscale building

blocks throughout the fields of engineering, materials science, chemistry, and biology.

By virtue of their unique structures and properties, polycationic polyami-

doamine (PAMAM) dendrimers have been extensively investigated for gene transfer

[158, 51, 16, 228]. Polycationic dendrimers can form compacted polyplexes with nu-

cleic acids in physiology pH. Furthermore, dendrimers can act as a “proton-sponge”

to facilitate the escape of polyplexes from endosomes and lysosomes [250, 242]. In

general, “proton-sponge” polymers contain a large number of secondary and tertiary

amines with a pKa at or below physiological pH. They can adsorb protons released

from ATPase and subsequently cause osmotic swelling and rupture of the endosome
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membrane to release the entrapped polyplexes.

Additionally, dendrimers facilitate transport of therapeutics across various cell

membranes or biological barriers. For instance, PAMAM dendrimers rapidly cross

adult rat intestine at high serosal transfer rates following endocytosis-mediated cel-

lular internalization. Surface groups and molecular mass affect the dynamics of den-

drimer cellular entry.

2.6.2 Examples of Dendrimer-Mediated RNAi Delivery

Dendrimers can be functionalized to carry a variety of functional moieties to enhance

knockdown efficiency, achieve targeted delivery, and reduce off-target effects.

2.6.2.1 PEGylated Dendrimers

Tang et al. reported the application of PEG-modified PAMAM dendrimers for siRNA

delivery [254]. They modified PAMAM dendrimer generations 5 and generation 6 with

MPEG-5000. They found that PEG-modified dendrimers were capable of protecting

complexed siRNA from RNase digestion. The in vitro studies revealed that PEG-

modified dendrimers achieved similar knockdown effects in Cos7 cells compared to

Lipofectamine 2000. They went on to study siRNA knockdown by the synthesized

PEGylated PAMAM dendrimers in animals. In this study, the authors intramus-

cularly injected PEG-modified dendrimer/siRNA against green fluorescence protein

(GFP) polyplexes to C57BL/6 mice transiently infected with adenovirus or GFP

transgenic mice and observed GFP suppression in both models. Interestingly, the

authors noted that PEGylated PAMAM dendrimer G5.0 has higher transfection effi-

ciency than PEGylated PAMAM dendrimer G6.0 and attributed it to a more flexible

structure and a smaller size of G5.0 in contrast to G6.0. A structurally flexible vector

tends to enhance compaction of siRNA and increase the fusion of the polyplexes with

the cell membrane. A smaller size of polyplexes would bring about increased cellular

uptake and enhanced release of the siRNA in the cell.
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2.6.2.2 PEGylated Dendrimers with Bis-aryl Hydrazone (BAH) Linkages

The “proton sponge” property conferred by amines in the dendrimer is crucial for

successful gene delivery. However, surface modification of PAMAM dendrimers with

PEG or other moieties has to utilize surface amine groups and inadvertently impairs

dendrimer buffering capacity. To address this issue, Yuan et al. employed a new

methodology to make PEGylated dendrimers by using a bis-aryl hydrazone (BAH)

linker (Figure 2.5) [321]. To use BAH to connect PEG to the dendrimer, PAMAM den-

drimer G4.0 is activated with succinimidyl 4-hydrazinonicotinate acetone hydrazone

(SANH), whereas monofunctional methoxypolyethylene glycol amine (PEG5000) is

activated with succinimidyl 4-formylbenzoate (SFB). A subsequent coupling reaction

between SFB-activated PEG and SANH-activated PAMAM forms a bis-aryl hydra-

zone linkage. It was found that use of BAH linkage simultaneously enables a high

degree of PEGylation and an increase in buffering capacity of the dendrimer vector.

Higher transfection efficiency was also observed for this vector compared to unmodi-

fied dendrimer [321]. Although the utility of this new PEGylated dendrimer for RNAi

delivery has yet to be reported, this new linker can be broadly used for dendrimer

surface modification without compromising buffering capacity required for endosomal

escape during RNAi intracellular transport.

2.6.2.3 Dendrimer-EGF Conjugates

Epidermal growth factor receptor (EGFR) is preferentially overexpressed in multi-

ple human solid tumors, including cancers of head and neck, lung, breast, colon,

and brain. Tumor cells expressing a high level of EGFR can be more specifically

targeted by a delivery system carrying EGFR ligand such as EGF. Following this

rationale, Yuan et al. designed a dendrimer-EGF delivery system, in which EGF is

covalently conjugated to PAMAM dendrimer G4.0 through a triglycine spacer (Fig-

ure 2.6) [320]. They observed that dendrimer-EGF conjugates facilitated intracellular

uptake in an EGFR-dependent manner without triggering EGFR signaling path-

ways in EGFR-overexpressing cells. Furthermore, they confirmed that dendrimer-
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Figure 2.5: Synthesis of PEGylated PAMAM dendrimers with BAH link-
ages.
(Reproduced from reference [321]. Copyright 2010 American Chemical Society.)
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Figure 2.6: Synthesis of dendrimer-EGF conjugates through triglycine
spacer (GGG).
(Reproduced from reference [320]. Copyright 2010 Elsevier.)

EGF conjugates improved siRNA delivery and gene knockdown efficiency compared

to commercial vectors and to unconjugated dendrimers. Particularly, they exam-

ined delivery of siRNA against yellow fluorescent protein (YFP siRNA) and shRNA

against vimentin (shVIM). Approximately 70% suppression of YFP expression in

YFP-expressing cells was achieved while approximately 40% suppression of vimentin

expression was achieved. The enhanced knockdown efficiency of dendrimer-EGF con-

jugates compared to unmodified dendrimer or TransIT (a commercial keratinocyte

transfection reagent) transfections indicates this delivery system is suitable for intro-

duction of nucleic acids into cells via a receptor-targeted mechanism [320].

2.6.2.4 Dendriworms

Agrawal et al. developed a modular platform, namely dendriworm, for siRNA delivery

(Figure 2.7) [3]. To make dendriworms, cystamine core PAMAM dendrimers (gener-

ation 4) were reduced to dendrons and then coupled to near-infrared dye-labeled iron

oxide nanoworms via a heterobifunctional linker, N-succinimidyl 3-(2-pyridyldithio)-

propionate (SPDP). SPDP is a reducible linker, allowing rapid removal of dendrons

from the conjugates in the reducing intracellular environment, which in turn helps

improve siRNA delivery and diffusion inside the cell. The obtained dendriworms had

16-25 mV zeta potential and 80-110 nm hydrodynamic diameter. The authors used

dendriworms to deliver EGFR siRNA for brain cancer treatment. In vitro studies
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Figure 2.7: Synthesis of dendriworms.
(Reproduced from reference [3]. Copyright 2009 American Chemical Society.)

show that EGFR expression in human glioblastoma cells was reduced by 70-80%,

which was 2.5-fold more efficient than commercial cationic lipids. In particular, 0.5

mg/ml of dendriworm (11 µg of total siRNA) was infused into the EGFR-driven trans-

genic mice of glioblastoma in a period of 7 days. A significant amount of nanoparticles

were delivered to the brain and lead to suppression of EGFR in the tumor.

2.7 Summary

Dendrimers display the evolving nature needed to incorporate a number of functional-

ities desirable for efficient delivery of RNAi. The biocompatibility, tumor specificity,

and immunocompatibility of dendrimer-based nanovectors can be achieved through

proper chemical modification at the periphery, and their composition, shape, and size
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can be precisely tuned to maximize transfection efficiency. Thus, dendrimer-based

RNAi delivery is likely to meet the strict regulatory requirements of polymer-based

therapeutics intended for use in humans.
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Chapter 3

Folic Acid-Mediated Cancer

Chemotherapy and Diagnosis: A

Literature Review

3.1 Introduction

Folate receptors (FRs), especially FRα, are highly expressed in numerous cancers in

order to meet the folate demand of rapidly dividing cells under low folate conditions

[198, 52, 221]. As a potential targeting agent, folic acid (FA) has several advantages

including lower molecular weight and less immunogenicity than most antibodies, rela-

tively high stability, and ease of synthesis [322]. Because the solubility of FA in water

is 1.6 mg/L at 25 ◦C, FA cannot readily dissolve in water. However, integration of

FA to water soluble nanoparticles (NPs) can excellently guide anticancer drugs to

tumors [322]. In this chapter, the mechanism of FR-targeting drug delivery systems

are discussed. The latest applications of FA in the anticancer drug delivery with

an emphasis on in vivo tumor xenograft models are reviewed. FA-mediated tumor

imaging and diagnosis is also reviewed.
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3.2 Structural basis of folic acid and folate recep-

tors

Folate, also known as vitamin B9 occurs naturally in food.Folic acid (FA), the syn-

thetic form of this vitamin, is shown in Figure 3.1. In adult tissues, folate or FA

is mainly transported by two transporters, reduced folate carrier (RFC) and folate

receptor. RFC is a ubiquitously expressed anion channeland is a ubiquitous low affin-

ity but high capacity transporter. RFC possesses low folate-binding affinity (Km =

1-10 µM) but a high FA-binding affinity (kd < 1 nM) [6, 335]. Folate receptor is a

high affinity, low capacity transporter found in specific tissues such as kidney, lung,

placenta. There are three subtypes of folate receptors (FRs): FRα, FRβ, and FRγ.

Among these three FRs, FRα is most widely expressed at very low levels in normal

tissues, but it is highly expressed in numerous cancers including ovarian, pediatric

ependymal brain, mesothelioma, breast, colon, renal, lung tumors, and head and neck

carcinomas, in order to meet the folate demand of rapidly dividing cells under low

folate conditions [198, 52, 221, 29]. Recently, a molecular simulation and docking

study revealed the ligand-receptor (FA-FRα) binding sites (Table 3.1) [29]. FA is

docked into an extended groove of FRα in the direction roughly perpendicular to the

plane formed by helices α1, α2 and α3. Both hydrogen bonds and hydrophobic inter-

actions occur around the pteroate moiety. The ligand-binding affinity study showed

that mutation of D81 in FRα significantly increases the dissociation constant (Kd)

value by 11.7 fold (Table 3.1), suggesting that replacement of D81 decreases FA bind-

ing affinity by more than one order of magnitude. The interaction of the aspartate

carboxyl oxygens with the pterin N1 and N2 nitrogens is very strong, contributing

to high-affinity ligand binding. In contrast, mutations of K136 and R106 have little

effect, and mutations of W102, R103, W140, and S174 have moderate effects on folic

acid binding [29]. Their work illustrates that -NH2
a is a key binding site for FA to

bind to FRα. The structural and mutational analysis provides a structural rationale

for the absolute requirement of the pterin group, especially -NH2
a group, for anchor-

ing folate in the binding pocket of the receptor. Additionally, the glutamate group
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Figure 3.1: Chemical structure of folic acid (FA).
-NH2

a, =Ob, -COOHc, and -COOHd are the major binding sites of FA to the ligand-
binding-pocket of folate receptor α.

Table 3.1: FA binding affinities of FRα ligand-binding-pocket mutants
Binding site
of FA

Binding site in FRα ligand-
binding pocket

Fold increase in Kd at the
site mutation of FRα rela-
tive to wild type FRα

-NH2
a D81A 11.7

=Ob R103A 2.5
... R106A 1.2
... S174A 2.0
-COOHc W140A 3.6
-COOHd W102A 3.1
... K136A 1.1

Data taken from Chen et al [29]. FA, folic acid; FRα, folate receptor α.

is available for conjugation with drugs and imaging reagents, without compromising

the interactions between receptor and ligand.

3.3 Folate-decorated anticancer drug delivery sys-

tems

To date, numerous FA-decorated nanostructures in various forms have been developed

for active targeted anticancer drug delivery. The schematic diagram of FA-decorated
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Figure 3.2: Schematic representation of a folic acid-decorated nanoparticle
(FA-NPs) for in vivo anticancer drug delivery and bioimaging.
Abbreviation: EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; NHS, N -
hydroxysuccinimide; PEG, polyethylene glycol; DOX, doxorubicin; CPT, camp-
tothecin, PTX, paclitaxel; siRNA, small interference RNA; Au, gold; NIR dye, near
infrared fluorescent Dye; FR, folate receptor.

33



anticancer drug delivery systems is illustrated in Figure 3.2.

3.3.1 Liposomes

A carboplatin-encapsulated folate receptor-targeted (FRT) liposomal system was de-

veloped for the treatment of metastatic ovarian cancer [28]. In vitro evaluation showed

that FRT carboplatin liposome increases carboplatin potency by two-fold. In the

IGROV-1 ovarian tumor-bearing SCID BC-17 mice, a superior survival rate (5 out

of 6) was observed in the mice treated with FRT carboplatin liposome via intraperi-

toneal (i.p.) injection twice a week for 3 weeks, and no metastasis was observed in

these mice. In contrast, no survivor was observed in the mice treated with saline,

free carboplatin or non-folate receptor-targeted carboplatin liposome, and the cancer

cells metastasized to the lung and liver tissues in these mice [28].

Folic acid and TAT peptide conjugated, octadecyl-quaternized, lysine-modified

chitosan-cholesterol polymeric liposomes (FA-TATp-PLs) were designed for tumor-

targeted drug delivery [334]. Paclitaxel (PTX) was loaded in the FA-TATp-PLs. In

vitro evaluation of FA-TATp-PLs revealed the targeting effects of folate decoration,

the transmembrane ability of TAT peptide, and their synergistic effects. In the KB

nasopharyngeal tumor-bearing SCID mice, the tumor growth rate of the mice intra-

venously (i.v.) injected with PTX-loaded FA-TATp-PLs and free Taxol was reduced

by 71% and 49%, respectively, compared with the one of PBS-treated mice. The drug

delivery system, FA-TATp-PLs, had no effect on tumor growth [334].

Folic acid-coupled PEGylated nano-paclitaxel liposome (FA-NP) was devel-

oped to reverse drug resistance in paclitaxel-resistant (SKOV3/TAX) ovarian cancer

[263]. In vitro evaluation showed that FA-NP but not NP markedly inhibited the

growth of ovarian cancer cells and caused more G2/M cell cycle arrest and apoptotic

changes in ovarian cancer cells than NP or free paclitaxel. These effects were blunted

in the presence of free FA, which competitively inhibited the receptor-mediated uptake

of FA-NP. In the SKOV3/TAX ovarian tumor-bearing nude mice, i.p. administration

of FA-NP but not free paclitaxel and non-targeted NP significantly prolonged the

survival and reduced tumor nodule number. However, i.v. administration of FA-NP
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failed to achieve these antitumor effects at the same dose following i.p. administration

[263].

Folate targeted docetaxel (DTX)-lipid-based-nanosuspensions (tLNS) were de-

veloped for active-targeted cancer therapy [274]. In the B16 tumor-bearing Kunming

mice, an obvious tumor regression was observed in the mice treated with tLNS, non-

targeted docetaxel-lipid-based-nanosuspensions pLNS and Duopafei. Here, the tumor

inhibition rate in the tLNS mice was higher than pLNS and Duopafei groups. In ad-

dition, both tLNS and pLNS generated less toxicity to the mice than Duopafei via

i.v. administration. The pharmacokinetic (PK) profiles for DTX showed that the

DTX serum concentration was measurable after 12 hours after i.v. injection of tLNS

and pLNS but not Duopafei group. Compared to the ones in Duopafei group, the

area under the plasma concentration-time curve (AUC) following i.v. administration

of tLNS and pLNS significantly increased by about 1.59 and 1.66 times, respectively,

clearance significantly decreased, and the mean residence time (MRT) was signifi-

cantly prolonged by about 2.40 and 2.41 times, respectively. The overall targeting

efficiency of pLNS was 1.09 times better than that of Duopafei; whereas the targeting

efficiency of tLNS was 1.13 times better than that of pLNS [274].

The presence of folic acid within the cholesterol domain could promote more

productive liposome-based transfection in cultured cells [299]. In the KB tumor-

bearing nude mice, lipoplexes that included FA within the cholesterol domain showed

significantly higher plasmid accumulation and transfection in tumors after intratu-

moral (i.t.) injection, as compared to lipoplexes in which FA was excluded from the

domain [299].

3.3.2 Linear polymers

A heparin-folate-paclitaxel (HFT) backbone with an additional paclitaxel (T) loaded

in its hydrophobic core (HFT-T) was designed for folate receptor-targeting cancer

therapy [279, 280]. In vitro evaluation showed that the HFT-T NPs enhanced cyto-

toxicity in both KB-3-1 and paclitaxel-resistant KB-8-5 cancer cells, compared to free

paclitaxel or nontargeted nanoparticle (HT-T). In both KB-3-1 and KB-8-5 tumor-
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bearing nude mice, i.v. administration of HFT-T enhanced the specific delivery of

paclitaxel into tumor tissues, prolonged retention within tumor tissues, and markedly

retarded tumor growth, which were associated with a higher degree of microtubule

stabilization, mitotic arrest, antiangiogenic activity, and inhibition of cell proliferation

[279, 280].

A biodegradable, folic acid conjugated poly(ester amine) (FP-PEA) was syn-

thesized to deliver TAM67 gene for cancer gene therapy [9]. In vitro evaluation showed

that the transfection efficiency of FP-PEA was drastically decreased in the presence

of an excess free folic acid in the FR-positive cells, and it exhibited very less signifi-

cant transfection against FR-negative cells. In the KB tumor-bearing BALB/c mice,

the tumor growth was suppressed after i.t. injection of FR-PEA/TAM67 polyplexes

[9].

siRNA-loaded folic acid-PEG-chitosan oligosaccharide lactate (siRNA/FA-PEG-

COL) NPs were prepared for targeted ovarian gene therapy [149]. Blood compatibility

assay showed that FA-PEG-COL NPs possessed superior compatibility with erythro-

cytes in terms of degree of aggregation and hemolytic activity and low effect on cell

viability. In the OVK18#2 ovarian tumor-bearing BALB nude mice, i.v. adminis-

tration of FA-PEG-COL NPs showed significant greater tumor accumulation than

non-targeting COL NPs [149].

3.3.3 Branched polymers

Folated PEG-chitosan-graft-polyethylenimine (FPCP) was designed for folate receptor-

targeting cancer cell gene delivery [121]. In vitro evaluation showed that FPCP was

much less cytotoxic than PEI, and the FA covalently linked with PEG had no negative

effect on cytocompatiblity. In the H-ras12V transgenic mice, i.v. administration of

FPCP-GFP complexes showed high levels of GFP expression in liver cancer tissues

compared with GFP only and PEI-GFP; while i.v. administration of FPCP-Pdcd4

complexes showed a significant decrease in tumor numbers compared with Pdcd4 only

but not PEI-Pdcd4 complexes [121].

2-hydroxypopyl-β-cyclodextrin (HP-β-CD) and folic acid cross-linked with low
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molecular weight polyethyleneimine (FA-HP-β-CD-PEI) was synthesized for tumor-

targeted delivery of siRNA [147]. Intracellular uptake of FA-HP-β-CD-PEI/siRNA

polyplexes was greater than non-targeted HP-β-CD-PEI/siRNA polyplexes in HeLa

cells. Additionally, administration of FA-HP-β-CD-PEI/siVEGF complexes to HeLa

cells reduced 92% VEGF protein expression in the presence of 20% serum. In the

HeLa tumor-bearing nude mice, four doses of i.v. administration of FA-HP-β-CD-

PEI/siRNA polyplexes markedly decreased VEGF expression in the tumor, which in

turn reduced tumor growth, compared to the ones treated with HP-β-CD-PEI/siRNA

polyplexes [147].

Folic acid-decorated ethylenediamine-surface modified fullerene (C60-PEI-FA)

was synthesized for tumor-targeted delivery of docetaxel (DTX) [234]. In the S180

tumor-bearing BALB/c mice, i.v. administration of C60-PEI-FA/DTX every 2 days

significantly inhibited tumor growth, compared to untreated, C60-PEI-FA-, free DTX-

, C60-PEI/DTX-treated mice. PK profiles showed that C60-PEI-FA/DTX signif-

icantly increased the blood circulation time of DTX by increasing the area under

the curve (AUC) and the mean residence time (MRT) 2 and 6 times, respectively,

compared to free DTX. More importantly, the uptake of DTX in tumor significantly

higher in C60-PEI-FA/DTX-treated mice than in C60-PEI/DTX- and DTX-treated

mice [234].

3.3.4 Polymeric micelles

Folate-targeted docetaxel (Dtxl) encapsulated PLGA-lecithin-PEG core-shell NPs

(FT-NP Dtxl) were synthesized as a new class of radiosensitizers for cancer radiother-

apy [284]. Both in vitro and in vivo evaluations showed that the radiosensitization

efficacy of FT-NP Dtxl is dependent on the timing of radiotherapy. In the KB tumor-

bearing nude mice, i.v. administration of free Dtxl, FT-NP Dtxl and non-targeting

NP Dtxl (NT-NP Dtxl) led to significant tumor growth delay when tumors were irra-

diated, but FT-NP Dtxl significantly delay tumor growth rate compared to NT-NP

Dtxl [284].

Folic acid-modified stealthy PEOz corona micelles (FA-PEOz-PCL) were syn-
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thesized to deliver doxorubicin (DOX) [214]. In the KB tumor-bearing BALB/c nude

mice, i.v. administration of DOX entrapped FA-PEOz-PCL micelles effectively in-

hibited the tumor growth and reduced the toxicity to mice compared with free DOX

[214].

Folic acid (FA) and paclitaxel (PTX) loaded polymeric micelles [FA-M(PTX)]

were prepared by coassembling FA-polymer conjugate [MPEG-b-P(LA-co-DHP/FA)]

and PTX-polymer conjugate [MPEG-b-P(LA-co-MCC/ PTX)] for the treatment of

human esophageal cancer [287]. In the human esophageal EC9706 tumor-bearing

nude mice, i.v. administration of FA-M(PTX) micelles was more efficient in inhibiting

tumor growth and extending the survival rate of the mice than free paclitaxel and

non-targeting PTX micelles. Compared with non-targeting micelles, FA-M(PTX)

micelles were preferentially uptaken by EC9706 cells in folic acid-free medium, while

their uptake could be competitively inhibited by free FA [287].

Folate-decorated biodegradable polymeric micelles [FA-M(Pt)] were prepared

by coassembling FA-polymer conjugate (FA-PEG-PLA) and diaminocyclohexane plat-

inum (DACH-Pt) of oxaliplatin-polymer complex [mPEG-b-P(LA-co-MCC/Pt)] [277].

Plasma pharmacokinetics of Pt showed that FA-M(Pt) possessed greater steady-state

area under the plasma clearance curve (AUC), slower plasma clearance rate (CL) and

longer mean residence time (MRT) than free oxaliplatin. M(Pt) had peak plasma

Pt concentration within 4 h; whereas FA-M(Pt) had peak plasma concentration after

4 h. Compared to M(Pt), FA-M(Pt) displayed a bigger AUC, slower CL, and the

same MRT, indicating FA-M(Pt) was not as good as M(Pt) as far as the plasma

drug concentration was concerned. In the H22 liver tumor-bearing Kunming mice,

i.v. administration of FA-M(Pt) was more effective inhibiting the tumor growth and

prolonging the survival rate of the mice than M(Pt) and free oxaliplatin [277].

Folic acid-decorated self-organized NPs (FADex NPs) were fabricated by com-

plexation of doxorubicin-conjugated dextran with FA-grafted chitosan for cancer ther-

apy [142]. In in vitro competition evaluation, the uptake of FADex NPs was signif-

icantly decreased by pre-treatment of free folic acid (2 mM) to the KB cells, which,

in turn, reduced Dox cytotoxicity potency. In the KB tumor-bearing BALB/c nude
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mice, two doses of i.v. administration of FADex NPs efficiently suppressed the tu-

mor growth compared to non-targeted PEGylated NPs (CPDex NPs) and free DOX.

However, this tumor growth suppression was greatly prohibited in the presence of free

FA (2 mM). This could explain the observation that the tumor growth tendency of

FADex NPs and FA-treated mice became similar to the one of CPDex NPs-treated

mice [142].

A pH-sensitive folic acid-PEG-chitosan-PAMAM was designed (FPCPHD) to

deliver plasmid DNA [276]. FPCPHD was prepared on the basis of a pH-sensitive

core-shell system, which contains PEG tethered carboxylated chitosan modified FA,

PAMAM dendrimer generation 4, high mobility group box 1 (HMGB1). In vitro eval-

uation showed that FPCPHD was resistant to heparin replacement and DNase I diges-

tion at N/P ratio above 8 and 2, respectively. In vitro transfection analysis indicated

that FPCPHD significantly enhanced luciferase and red fluorescence protein (RFP)

gene transfection and expression in KB cells, compared to PAMAM/pDNA (PD),

PAMAM/HMGB1/pDNA (PHD), CCTS/PAMAM/HMGB1/pDNA (CPHD), and

PEG-CCTS/PAMAM/HMGB1/p-DNA (PCPHD) nanocomplexes. This enhance-

ment could be significantly inhibited by pre-treatment of free FA at 1 mM in KB cells.

Intracellular trafficking of FPCPHD in KB cells showed that FPCPHD rapidly es-

caped from endo-lysosomes and exclusively located in the nucleus at 3 h post transfec-

tion. In the S180 tumor-bearing BALB/c nude mice, i.v. administration of FPCPHD

significantly increased RFP expression at the tumor site, compared to PD, PHD,

CPHD, and PCPHD [276].

Self-assembled polyelectrolyte polyplexes of folate-dextran-siRNA via disul-

fide bonds and linear polyethylenimine (folate-DSC/LPEI) were reported for tumor-

targeted systemic delivery of siRNA [118]. In vitro evaluation showed that the in-

tracellular uptake of folate-DSC/LPEI was 3.2 times higher in the absence of free

FA than presence of free FA at 1 mg/L in KB cells. In the GFP overexpressing-

HeLa tumor-bearing nude mice, i.v. administration of folate-DSC/LPEI containing

siGFP efficiently surpressed tumor GFP expression, compared to the ones treated

with PBS and DSC/LPEI.[26] The biodistribution result showed that much higher
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fluorescence intensity was observed in the tumor region compared to that from the

mice treated with the naked siRNA/LPEI complexes. However, significant amounts

of the folate-DSC/LPEI polyplexes accumulated in the liver and kidney [118].

3.3.5 Others

A molecular hydrogelator system of FA-Taxol conjugates was designed to improve

Taxol therapeutic efficacy [303]. The hydrogels, made of glutathione (GSH), could

trigger sustained release of Taxol through ester bond hydrolysis. In the 4T1-luciferase

breast tumor-bearing mice, a single dose of i.t. administration of FA-Taxol hydrogel

more potent than four doses of i.v. injection of free Taxol [303].

A folate receptor-targeted rhaponticin (FRHA) was synthesized via a releasable

disulfide linker to improve RHA therapeutic efficacy [151]. In the FR-positive KB and

M109 tumor-bearing Balb/c mice, i.v. administration of FRHA three times per week

significantly inhibited tumor growth, compared to PBS and free RHA treatment.

However, in the FR-negative 4T1 tumor-bearing Balb/c mice, i.v. administration of

FRHA failed to suppress tumor growth, similar to PBS and free RHA treatments.

Markedly, unlike free RHA, the mice treated with FRHA did not loss body weight,

indicating no gross toxicity or adverse effects after FRHA therapy. PK profiles showed

that FRHA was rapidly removed (half-life: about 10 min) from systemic circulation

after i.v. administration to mice bearing FR-positive M109 cells, which was much

faster than that in FR-negative 4T1 tumor-bearing mice or normal mice [151].

Folate-appended methyl-b-cyclodextrin (FA-M-β-CyD) was synthesized for de-

livery of doxorubicin [192]. In vitro evaluation showed that FA-M-β-CyD possessed

increase cytotoxicity to KB cells, compared to M-β-CyD. This increase was signifi-

cantly suppressed by pre-treatment of free FA at 1 mM. In the Colon-26 tumor-bearing

BALB/c mice, single i.t. or i.v. administration of FA-M-β-CyD drastically inhibited

the tumor growth, compared to control, doxorubicin, and M-β-CyD treated mice.

Markedly, all of the tumor-bearing mice treated with FA-M-β-CyD survived for at

least more than 140 days; whereas the others only survived for around 60 days. Addi-

tionally, FA-M-β-CyD treated mice showed no significant change in blood chemistry
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values, including creatinine, blood urea nitrogen, aspartate aminotransferase, alanine

aminotransferase, and lactate dehydrogenase [192].

Folic acid-anchored cucumber mosaic virus (FA-CMV) was synthesized for

tumor-targeted delivery of doxorubicin (DOX) [323]. DOX was loaded into the inte-

rior cavity of CMV through the formation of DOX-RNA conjugate. In vitro evaluation

showed that the intracellular uptake of DOX by FA-CMV-DOX was increased by 3

times in OVCAR-3 cells, compared to CMV-DOX or free DOX. This increase was sig-

nificantly reduced in the presence of free FA at 1 mM. In the OVCAR-3 tumor-bearing

BALB/c nude mice, i.p. administration of FA-CMV-DOX every five days significantly

decreased the accumulation of DOX in mouse myocardial cells but increased the up-

take of DOX in the ovarian cancer cells, compared to negative control, free DOX,

and CMV-DOX treatment. Thus, FA-CMV-DOX possessed less cardiotoxicity but

enhanced antitumor effect [323].

Folic acid conjugated single-walled carbon nanotubes (FA-SWNT) were devel-

oped to deliver paclitaxel. Non-toxic lipid molecule docosanol-conjugated paclitaxel

(PTX) was loaded onto FA-SWNT via hydrophobic interactions (FA-SWNT-lipid-

PTX) [232]. In vitro evaluation showed that FA-SWNT-lipid-PTX improved drug

efficacy in MCF-1 cells, compared to free PTX and non-targeted SWNT-lipid-PTX.

In the MCF-1 breast tumor-bearing nude mice, 4 doses of i.v. administration of FA-

SWNT-lipid-PTX significantly suppressed tumor growth compared to free PTX and

PBS treatment. At notice, no mortality and adverse effect was observed in SWNT-

lipid-PTX-treated mice. Hematologic assessment (hematocrit, hemoglobin, red blood

cell count and white blood cell count) and histological staining (liver, heart, lung, and

kidney) showed no difference between control and SWNT-lipid-PTX-treated mice

[232].

Folic acid-decorated poly(ethylene oxide)-b-poly(methacrylic acid)-cross-linked

nanogels (FA-nanogels) were developed to deliver cisplatin (CDDP) or doxorubicin

(DOX) [188]. The uptake of FA-nanogels in human ovarian carcinomas A2780 (FR-

positive cells) greatly exceeded the uptake of the non-targeted nanogels. The in

vitro competitive assay illustrated that FA-nanogels possessed much higher affinity
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to cellular FR than free FA. In the A2780 ovarian tumor-bearing nude mice, tumor

uptake of FA-nanogels was significantly higher than free CDDP and non-targeted

nanogels at 4 days post i.v. administration. The increased uptake was significantly

reversed by co-administration of free FA. As a result, i.v. administration of FA-

nanogel/CDDP every four days significantly reduced tumor growth, compared to

dextrose, nanogel alone, free CDDP, nanogel/CDDP, and FA-nanogel/CDDP in the

presence free FA treatment.[32] It was observed that in the presence of 0.5 mM folate,

the uptake of FA-nanogels was nearly 50% of the initial. In the presence of 10 mM FA,

the uptake of FA-nanogels was suppressed to the level of the untargeted nanogels (20-

25%), indicating FA-nanogels displayed much higher affinity to cellular FR than free

FA. This may be beneficial for targeting in the body environment, where FA-nanogels

would compete with free folate [188].

Doxorubicin-loaded folate-decorated silica nanorattles (DOX-FA-SNs) were de-

veloped to improve anti-tumor effects [65]. In HeLa tumor-bearing BALB/c nude

mice, near infrared-labeled FA-SNs (ICG-FA-SNs) were distributed into the tumor at

4 hours post i.v. administration, and it retained in the tumor up to 24 hours. Subse-

quently, i.v. administration of DOX-FA-SNs every three days significantly suppressed

tumor growth, compared to control, FA-SNs alone, free DOX, and non-targeted DOX-

SNs [65].

3.4 Folate receptor-targeted nanoparticles for tu-

mor imaging

Nanotechnology has been extensively applied to improve tumor imaging and diagno-

sis, including near-infrared (NIR) fluorescence imaging, magnetic resonance imaging

(MRI), computed tomography (CT), ultrasonic imaging.

NIR fluorescence imaging is a highly sensitive, non-invasive, non-radiant tech-

nique for real-time in vivo monitoring of biological information [126]. Heparin-folic

acid-IR-780 nanoparticles (HF-IR-780 NPs) were designed for in vivo tumor imaging
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[322]. HF-IR-780 NPs were synthesized by self-assembly of the heparin-folic acid con-

jugates and NIR fluorescence dye-780 through ultrasonication [322]. In the MCF-7

tumor-breaing nude mice, the fluorescence signal was mainly located in the lung and

liver at 1 h post-i.v. injection. The fluorescence signal in the tumor was detected

at 3 h post-i.v. injection, and the signal intensity was observed at a much stronger

in tumor tissue than in the lung and liver at 72 h post-i.v. injection. HF-IR-780

NPs treated mice showed stronger fluorescence intensity in the tumor tissue than free

IR-780 in the excised tissue evaluation at 72 h post-injection [322].

Folic acid-modified trypsin-stabilized gold nanoclusters with NIR fluorescence

(FA-try-AuNCs-NIR) was designed for cancer imaging [155]. In the Hela tumor-

bearing nude mice, the fluorescence signal was detected immediately after i.t. in-

jection of FA-try-AuNCs-NIR, and the signal in the tumor can remain up to 12 h.

Moreover, after subcutaneous injection of FA-try AuNCs-NIR, the fluorescence signal

was detected all over the whole body of the mice within 5 min. However, the signal

intensity elevated at in the tumor site diminished at a slower rate than in the normal

tissues [155].

A folate receptor-targeted aggregation-enhanced NIR emitting silica nanoprobe

(SiNP-DFP-PEG-FA) was reported for in vivo tumor imaging [281]. Fluorenyl deriva-

tive DFP was encapsulated in the silica NPs, to which folic acid was conjugated via

a PEG linkage, yielding SiNP-DFP-PEG-FA. In the HeLa tumor-bearing nude mice,

fluorescence signal was detected in the tumor after 30 min post-i.v. injection of

SiNP-DFP-PEG-FA. The tumor fluorescence intensity steadily increased and reached

a peak at 6 h post-i.v. injection. However, no significant fluorescence signal was

detected in the tumor of the mice injected with SiNP-DFP-PEG [281].

A stable self-assembled NP-gadolinium complex was designed to serve as a

paramagnetic MRI contrast agent for in vivo tumor imaging [85]. The NPs were

assembled via an ionotropic gelation process between poly-γ-glutamic acid-folic acid

conjugates (PGA-FA) and fluorescently labeled chitosan conjugates (CH-A546). They

were further complexed with gadolinium (Gd) to form a PGA-FA/CH-A546-Gd con-

trast agent. In the HeLa tumor-bearing nude mice, the MRI signal intensity in the
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tumor site increased 34% at 2 h i.v. injection of PGA-FA/CH-A546-Gd contrast

agent, compared to the untreated mice [85].

Folate-attached superparamagnetic iron oxide NPs (SPIONs) were used as a

MRI contrast agent for in vivo tumor imaging [93]. SPIONs were encapsulated within

poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) micelles, which contain folic

acid at the distal ends of PEG chains. The resulting FA-PEG-PCL-SPIONs were

tested in the BEL-7402 tumor-bearing nude mice. The change of MRI signal intensity

was -41.2% in the tumor site at 3h post-i.v. injection of FA-PEG-PCL-SPIONs, a

2.5-fold increase compared to non-targeting PEG-PCL-SPIONs treated mice. It was

observed that an ideal post-i.v. injection time window for MRI scanning was within

6 h for FA-PEG-PCL-SPIONs [93].

Radioiodinated tyrosine-click-folic acid conjugates (125I-tyrosine-click-folate)

were synthesized for single-photon emission CT of tumor [218]. In the KB tumor-

bearing nude mice, the CT signal in both tumor and kidney was achieved at 1 h

post-i.v. injection of 125I-tyrosine-click-folate. Preinjection of potassium iodide and

antifolate pemetrexed to the mice effectively reduced CT signal in the non-trageted

organs, including thyroid gland and kidney, improving tumor-to-background contrast

[218].

Folic acid-modified dendrimer-entrapped gold NPs (Au DENPs-FA) were used

for X-ray CT imaging of human lung adenocarcinoma [271]. In the SPC-A1 tumor-

bearing nude mice, Au DENPs-FA were uptaken by tumor tissue via i.v., i.t. or i.p.

injection, allowing for effective CT imaging of tumor. Besides the tumor accumulation

of Au DENPs-FA, a large amount of Au element was found in lung, spleen and liver,

allowing these NPs to be cleared through the renal route and reticuloendothelial

system (RES) [271].

Later, gadolinium (Gd) loaded Au DENPs-FA (Gd-Au DENPs-FA) were de-

signed for targeted dual CT/MR imaging of tumors [32]. In the KB tumor-bearing

nude mice, both CT value and MR signal in the tumor site increased by 200% and

152.7%, respectively at 24 h post-i.v. injection of Gd-Au DENPs-FA, compared to

the Gd-Au DENPs-injected ones, allowing targeted dual mode CT/MR imaging of
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tumors overspressing FR. These nanoprobes could be cleared out from the body in

96 h [32].

3.5 Summary

PEG-modified NPs can prolong the NPs half-life in the body, promote ligand-receptor

binding, and hereby enhance accumulation of drug at the tumor site. When FA-

decorated NPs arrive at a FR-positive tumor cell, FA can not only increase the re-

tention of the NPs in the tumor mass but also facilitate the uptake of the NPs by

FR-mediated endocytosis to exert their pharmacological effect. However, liver is a

major storage organ of excess folate [171, 269]; liver and spleen are major organs that

harbor large numbers of macrophages [255]; and kidney is a major organ for folate

resorption [29]. Indeed, the weakness of this strategy remains that FA-decorated NPs

can still be captured by the liver, spleen, and kidney.
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Chapter 4

Folic Acid-Decorated PAMAM

Dendrimer for Targeted Gene

Delivery: Synthesis,

Characterization, and In Vitro

Evaluation

Preface: This chapter has been prepared as a research article.

Leyuan Xu, Shannon Andrews, W. Andrew Yeudall, Hu Yang

4.1 Abstract

In this work, a folic acid (FA)-conjugated polyamidoamine (PAMAM) dendrimer gen-

eration 4 labeled with fluorescein isothiocyanate (FITC) was designed for targeted

nucleic acid delivery and tumor imaging. 1H NMR, HPLC, and DLS were applied

to characterize the synthesized dendrimer derivatives. Cellular uptake efficiency, tar-

geting specificity, cytocompetibility, and transfection efficiency were evaluated using

HN12 cells and coculture model of HN12-YFP cells with U87 cells. It was found that

the cellular uptake of FITC-G4-FA conjugates and G4-FA/DNA polyplexes was in a
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folate receptor (FR) dependent manner, as the evidence shown free FA significantly in-

hibited the cellular uptake of both conjugates and polyplexes. In the coculture model,

G4-FA/DNA polyplexes were preferentially uptaken by FR-positive HN12 cells but

not by FR-negative U87 cells. In contrast, the cellular uptake of FITC-G4 conjugates

and G4/DNA polyplexes was non-selective. At the same weight ratio, G4-FA con-

jugates have been shown to be capable of both transfecting more cells and inducing

higher gene expression than native G4 dendrimer. This work demonstrates that FA

decoration on dendrimer/DNA polyplexes allows targeted nucleic acid delivery and

results in enhanced gene transfection efficiency.

4.2 Introduction

Nanoparticles (NPs) have shown great potential for gene delivery. A number of

nanocarrier delivery systems including dendrimers [132, 201, 270], liposomes [131,

143, 301, 311], polymeric micelles [177, 189, 122, 36, 317], linear polymers [327, 48],

quantum dots [213, 304, 230, 148], and iron oxide nanoparticles [66], have been uti-

lized to deliver genes and have demonstrated promising properties in gene delivery.

Among these, dendrimers have been attracted considerable attentions. Dendrimers

possess very low polydispersity and high functionality and have been recognized to be

one of the most versatile compositionally and structurally controlled nanoscale build-

ing blocks for drug and gene delivery [297]. Dendrimers have received considerable

attention in cancer drug delivery because of their capability of their advantages in-

cluding (1) maintaining drug levels in a therapeutically desirable range, (2) increasing

half-lives, (3) increasing solubility of drugs, (4) delivering a variety of drugs, (5) facil-

itating passage across biological barriers by transcytosis, (6) enabling rapid cellular

entry, and (7) reducing side effects by targeted delivery [173, 187, 286].

Polyamidoamine (PAMAM) dendrimers bearing positive amine functionalities

at the surface appear to be an ideal class of building blocks for ionic condensation

with negatively charged nucleic acid (DNA/RNA) molecules. These polycationic den-

drimers can form stable polyplexes with nucleic acids and aid efficient internalization
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of nucleic acids mainly through endocytosis and membrane destabilization. Addi-

tionally, these dendrimers harbor tertiary amines within their interior. Both primary

and tertiary amines can preferentially promote the intracellular release of nuclei acids

in endosomes and lysosomes where the physiological pH drops to 5.5-6.0 and 5.0,

respectively, via the “proton sponge” effect [117, 140, 172, 193, 249]. High generation

polycationic dendrimers are excellent nanovectors able to deliver nucleic acids in vitro

and in vivo, showing great potential for clinical applications [159, 209]. However, syn-

thesis of high generation dendrimers on a large scale is technically demanding and

difficult to meet the “good manufacturing practice” (GMP) grade required for further

clinical trials [154]. Therefore, developing lower generation polycationic dendrimers

via surface modification to enhance effective delivery constitutes a worthwhile goal.

Folate or folic acid (FA), also known as vitamin B9, is essential for numerous

body functions. Folate is a one-carbon donor for the synthesis of purine and thymi-

dine, which are essential for synthesis of nuclei acids and indirectly for methylation

of DNA, proteins, and lipids, via S-adenosyl methionine [29, 10]. Therefore, folate

is important to facilitate rapid cell division and growth. Not only children, but also

adults require folate to produce healthy red blood cells and prevent megaloblastic

anemia [285]. However, humans cannot synthesize folates de novo; therefore, folate

has to be supplied through diet to meet daily requirements. In adult tissues, folate

or FA is mainly transported by two transporters, reduced folate carrier (RFC) and

folate receptor. RFC is a ubiquitously expressed anion channeland is a ubiquitous

low affinity but high capacity transporter. RFC possesses low folate-binding affinity

(Km = 1-10 µM) but a high FA-binding affinity (kd < 1 nM). Folate receptor is a

high affinity, low capacity transporter [6, 335]. Currently, three subtypes of folate re-

ceptors (FRs) have been identified, which are FRα, FRβ, and FRγ. These three FRs

are cysteine-rich plycoproteins, which mediate folate uptake via endocytosis [29]. The

expression of FRs is highly restricted to the cells important for embryonic develop-

ment, including placenta and neural tubes, and folate resorption such as kidney [29].

Among them, FRα is most widely expressed at very low levels in normal tissues but

at high levels in cancers including ovarian, pediatric ependymal brain, mesothelioma,
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breast, colon, renal, lung tumors, and head and neck carcinomas, in order to meet

the folate demand of rapidly dividing cells under low folate conditions [198, 52, 221].

In the last decade, FR-targeting drug delivery systems have been developed

using different polymers such as liposomes [28, 334], polymeric micelles [214, 284],

linear polymers [9, 149], and branched polymers [128, 121]. Dendrimer have also been

developed for FR-targeted cancer drug delivery. For instance, methotrexate (MTX)

and FA-conjugated, partially acetylated PAMAM dendrimer generation 5 (G5-FA-

MTX) conjugates were shown to preferentially kill FR-positive cells in a coculture

assay with both FR-positive and FR-negative cells and in a heterogeneous xenograft

tumor model [180]. Noteworthy is that 70-90% of primary amines on the PAMAM

dendrimer G5 surface were acetylated in order to decrease polydispersity during the

synthesis and more importantly to neutralize positive surface charge of dendrimer,

which can in turn reduce non-specific cellular uptake [128].

With this in mind, we hypothesized that FA-conjugated PAMAM dendrimer

generation 4 (G4-FA) conjugates can enhance gene delivery in FR-positive cells in

vitro. Plasmid DNA was complexed with G4-FA conjugates to form G4-FA/DNA

polyplexes, as a means to neutralize positive surface charge of G4 dendrimer, and

subsequently reduce non-specific cellular uptake of polyplexes. In this work, the

fundamental aspects of the constructed G4-FA conjugates, including synthesis, char-

acterization, mechanism of intracellular uptake, and transfection efficiency, were ex-

amined.

4.3 Materials and Methods

4.3.1 Materials

Diaminobutane (DAB) core polyamidoamine (PAMAM) dendrimer generation 4.0

(technical grade) was purchased from NanoSynthons (Mt. Pleasant, MI). Dimethyl

sulfoxide (DMSO), folic acid (FA), Trifluoroacetic acid (TFA), formaldehyde solution

(37 wt. % in H2O), 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride
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(EDC), N ,N -diisopropylethylamine (DIPEA), deuterium oxide (D2O; 99.9 atom %

D), deuterated dimethyl sulfoxide (DMSO-d6), and fluorescein isothiocyanate (FITC)

were purchased from Sigma-Aldrich (St. Louis, MO). Acetonitrile (ACN), water

(HPLC grade), triton X-100, 4’,6-diamidino-2-phenylindole (DAPI), sodium hydrox-

ide, and phosphate-buffered saline (PBS) were purchased from Fisher Scientific (Pitts-

burgh, PA). Ethidium bromide, Dulbeccos modified Eagle medium (DMEM), trypsin-

EDTA (0.25%), and penicillin-streptomycin (10,000 U/mL) were purchased from Life

Technologies (Carlsbad, CA). Label IT Cy3 control plasmid was purchased from Mirus

Bio (Madison, WI). Vectashield mounting media were purchased from Vector Labora-

tories (Burlingame, CA). Polyvinylidene difluoride (PVDF) membrane was purchased

from Millipore (Billerica, MA). Western lightning Plus ECL was purchased from

Perkin-Elmer (Waltham, MA). Cosmic calf serum (CS) and pMAX-GFP (pGFP)

plasmid were purchased from Lonza (Walkersville, MD). GFP (sc-9996) and β-actin

(ACTBD11B7) antibody were purchased from Santa Cruz Biotechnology (Santa Cruz,

CA). SnakeSkin dialysis tubing with 7,000 molecular weight cut-off (MWCO) and

folate receptor (FR) antibody were purchased from Thermo Scientific (Rockford,

IL). Goat anti-rabbit antibody conjugated to horseradish peroxidase and goat anti-

mouse antibody conjugated to horseradish peroxidase were purchased from Bio-Rad

(Hercules, CA). WST-1 cell proliferation reagent, protease inhibitor and phosphatase

inhibitor cocktail tablets were purchased from Roche Applied Science (Grand Island,

NY). Propidium iodide (PI) was purchased from BD Biosciences (San Jose, CA).

4.3.2 Synthesis of PAMAM dendrimer conjugates

4.3.2.1 Synthesis of G4-FA conjugates

FA (18.6 mg, 42.2 µmol, MW = 441.4 g/mol) was allowed to react with EDC (113.3

mg, 590.9 µmol, MW = 191.71 g/mol) in a mixture of 12 mL of DMF and 4 mL

of DMSO for 1 h. The organic reaction mixture was added dropwise to 50 mL

of DI water solution containing 100 mg (7. 03 µmol) of PAMAM dendrimer G4

(MW = 14215 g/mol). The reaction mixture was vigorously stirred for 2 days and
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then dialyzed against DI water using dialysis tubing with MWCO of 7 kDa for 2

days. After lyophilization (Flexi-DryTM MP corrosion resistant freeze-dryer), the

resultant G4-FA conjugates were obtained. The number of FA molecules coupled to

each G4 dendrimer was quantified by using GENESYS 6 spectrophotometer (Thermo

Scientific, Rockford, IL).

4.3.2.2 Synthesis of FITC-G4-FA conjugates

FITC (4.9 mg, 12.67 µmol, MW = 389.38 g/mol) was dissolved in 1 mL of DMSO.

The FITC solution was added dropwise to 9 mL of PBS containing 40 mg (2.53

µmol) of G4-FA conjugates (MW = 15783 g/mol by UV-Vis spectrophotometer) in

the presence of 9.8 mg (76.03 µmol) of DIPEA (MW = 129.25 g/mL). The reaction

mixture was stirred in the dark for 1 day and then dialyzed against DI water using

dialysis tubing with MWCO of 7 kDa for 2 days. After lyophilization, the resultant

FITC-G4-FA conjugates were obtained. The number of FITC molecules coupled to

each G4-FA conjugate was quantified by using GENESYS 6 spectrophotometer.

4.3.2.3 Synthesis of FITC-G4 conjugates

FITC (5.5 mg, 14.07 µmol, MW = 389.38 g/mol) was dissolved in 1 mL of DMSO.

The FITC solution was added dropwise to 9 mL of PBS containing 40 mg (2.81 µmol)

of G4 dendrimer (MW = 14215 g/mol) in the presence of 10.9 mg (84.42 µmol) of

DIPEA (MW = 129.25 g/mL). The reaction mixture was stirred in the dark for 1 day

and then dialyzed against DI water using dialysis tubing with MWCO of 7 kDa for

2 days. After lyophilization, the resultant FITC-G4 conjugates were obtained. The

number of FITC molecules coupled to each G4 dendrimer was quantified by using

GENESYS 6 spectrophotometer.

4.3.3 High-performance liquid chromatography (HPLC)

The purity of the resultant G4-FA, FITC-G4-FA, and FITC-G4 conjugates were de-

termined by HPLC. The reverse-phase HPLC (RP-HPLC) system (Waters, Milford,
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MA) consisting of a system Waters 1515 isocratic HPLC pump, a model Waters

717plus autosampler, and a model Waters 2487 dual λ absorbance detector was used

in this work. An XTerra particle-based RP-HPLC column (length 150mm, particle

size 5 µm, RP18) was purchased from Waters (Milford, MA). The mobile phase for

elution of PAMAM dendrimer and its derivatives was H2O:ACN:TFA (750:250:0.38,

v/v/v) at a flow rate of 1 mL/min [181]. All the samples were dissolved into the

aqueous mobile phase. The detection of eluted samples was performed at 275 nm and

485 nm. The analysis was performed using the BreezeTM software (Waters, Milford,

MA).

4.3.4 Proton nuclear magnetic resonance (1H NMR) spec-

troscopy

1H NMR spectra were recorded on a Varian superconducting fourier-transform NMR

spectrometer (Mercury-300) in the Nuclear Magnetic Resonance Center at Virginia

Commonwealth University. D2O and DMSO-d6 were used as the solvent. The 1H

chemical shift for D2O residue and DMSO-d6 are 4.8 ppm and 2.5 ppm.

4.3.5 Paticle size and zeta potential measurements

PBS was filtered through a 20 nm filter. G4 dendrimer and its derivatives were

dissolved in the filtered PBS at the concentration of 0.5 mg/mL. Various amounts

of G4-FA conjugates (0 µg, 10 µg, 50 µg, and 200 µg) and G4 dendrimers (50 µg)

were dissolved in 600 µL of filtered PBS; while 10 µg of pMAX-GFP plasmid was

diluted in 400 µL of filtered PBS. The solutions were vortexed for 10 s and then

equilibrated for 10 min at room temperature. The dendrimer solution was added to

the plasmid solution, homogenized for 10 s with a vortex, and equilibrated for 30 min

at room temperature. The size and zeta potential of G4 dendrimer, its derivatives,

and polyplexes were measured at room temperature using a Malvern Zetasizer Nano

ZS90 apparatus (Malvern Instruments, Worcestershire, U.K.).
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4.3.6 Gel retardation assay

A series of G4-FA/plasmid polyplexes were prepared. 0 µg, 0.4 µg, 1 µg, 2 µg, 10

µg, 20 µg, and 40 µg of G4-FA conjugates were diluted in 300 µL of DMEM; while 2

µg of plasmid (p53 or pGFP) was diluted in 200 µL of DMEM. The solutions were

mixed by vortexing for 10 s and then equilibrated for 10 min at room temperature.

The G4-FA conjugates solution was added to the plasmid solution, homogenized for

10 s with a vortex, and equilibrated for 30 min at room temperature. The formation

of G4-FA/DNA polyplexes was examined by electrophoretic mobility in an agarose

gel. 20 µL of each polyplex was loaded into a 1% agarose gel containing ethidium

bromide (0.5 µg/mL) and subjected to electrophoresis at 100 V for 1 h. The DNA

bands were detected by a UV transilluminator (Alpha Innotech, ProteinSimple, San

Jose, CA) [321].

4.3.7 Cell culture

Multiple cell lines including HN4 cells and HN6 cells, derived from a primary squa-

mous cell carcinoma of the head and neck, HN12 cells derived from a synchronous

lymph node metastasis, T98, U87, and U1242 glioblastoma cells were used in the

studies; and NIH3T3 mouse fibroblasts were used as a negative control. All the cells

were cultured in Dulbeccos modified Eagles medium (DMEM) supplemented with

10% Cosmic calf serum, 100 units/mL of penicillin, and 100 µg/mL of streptomycin

at 37 ◦C in 95% air/5% CO2 as described previously [215, 200, 272, 273, 73, 320].

4.3.8 Polyplex formation

For in vitro cellular uptake assessment, a solution of G4-FA/Cy3-plasmid, G4/Cy3-

plasmid, or FITC-G4-FA/Cy3-plasmid polyplexes was prepared accordingly. 5 µg of

G4-FA conjugates, G4 dendrimer, or FITC-G4-FA conjugates was diluted in 300 µL

of DMEM; while 1 µg of Cy3-plasmid was diluted in 200 µL of DMEM.

For in vitro gene transfection assessment, a series of G4-FA/plasmid and

G4/plasmid polyplex solutions were prepared accordingly. 2 µg, 10 µg, and 40 µg of

53



G4-FA conjugates or 40 µg of G4 were diluted in 300 µL of DMEM; while 2 µg of

plasmid (pMAX-GFP or pCEFL-YFP) was diluted in 200 µL of DMEM.

All the solutions were well mixed by vortexing for 10 s and then equilibrated

for 10 min at room temperature. The G4-FA conjugates solution or G4 dendrimer

solution was added to the plasmid solution, homogenized for 10 s with a vortex, and

equilibrated for 30 min at room temperature. Then 2.5 mL of the complete medium

containing 10% serum was added into the polyplex solution, and the final volume

brought to 3 mL. PBS was used as experimental negative controls [159, 154].

4.3.9 Fluorescence microscopy

For in vitro cellular uptake assessment, HN12 cells were seeded in the 6-well plates

at a density of 20,000 cells/well and allowed to attach overnight. In the coculture

assessment, YFP-overexpressed HN12 cells (HN12-YFP) and U87 cells were seeded

in the 6-well plates at the same density of 10,000 cells/well and allowed to attach

overnight. Before addition of the transfection medium, the spent medium was re-

moved, and the cells were washed with PBS once. The cells were treated with FITC-

G4 (10 µg/mL), FITC-G4-FA (10 µg/mL), FITC-G4/Cy3-plasmid and FITC-G4-

FA/Cy3-plasmid polyplexes (described above) in the absence or presence of free FA

(0.5 mg/mL) at 37 ◦C for 0, 1, 6, and 24 h.

For in vitro GFP transfection assessment, HN12 cells were seeded in the 6-

well plates at a density of 20,000 cells/well and allowed to attach overnight. Before

addition of the transfection medium, the spent medium was removed, and the cells

were washed with PBS once. The cells were treated with G4-FA/pGFP polyplexes

and G4/pGFP polyplexes (described above) in the absence of free FA at 37 ◦C for 48

h. The spent medium was then replaced with the complete medium containing 10%

serum and maintained under normal growth conditions for another 48 h.

At the end of each treatment, HN12 cells were washed with PBS for three

times, fixed with 4% formaldehyde at room temperature for 20 min, washed with

PBS for three times, permeated with 0.1% Triton X-100 for 5 min, and washed with

PBS for three times. The cell nuclei were counterstained with DAPI for 5 min, and
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the cells were washed with PBS for three times. Fluorescent images were taken using

a Zeiss Axiovert 200 inverted fluorescence microscope using a magnification of 20×

(Carl Zeiss Microimaging, Thornwood, NY). A 405 laser line was selected for DAPI,

a 488 laser line was selected for GFP/YFP/FITC, and a 543 laser line was selected

for Cy3 [321].

4.3.10 Intracellular trafficking studies

HN12 cells were seeded onto microscope glass coverslips (Fisher Scientific, Pittsburgh,

PA) in the 6-well plates at a density of 20,000 cells/well and allowed to attach

overnight. Before addition of the transfection medium, the spent medium was re-

moved, and the cells were washed with PBS once. The cells were then treated with

FITC-G4-FA/Cy3-plasmid polyplexes (described above) at 37 ◦C for 24 h. At the

end of treatment, the cells were washed with PBS for three times, fixed with 4%

formaldehyde at room temperature for 20 min, washed with PBS for three times,

permeated with 0.1% Triton X-100 for 5 min, and washed with PBS for three times.

The cell nuclei were counterstained with DAPI (blue) for 5 min, and the cells were

washed with PBS for three times. The coverslips were mounted on the slides and im-

aged under a Zeiss LSM 700 confocal laser scanning microscope using a magnification

of 630× in the Microscope Core Facility at Virginia Commonwealth University [298].

4.3.11 Flow cytometry

HN12 cells were first seeded in the 60-mm dishes at a density of 50,000 cells/dish and

allowed to attach overnight. Before addition of the transfection medium, the spent

medium was removed, and the cells were washed with PBS once.

For in vitro cellular uptake assessment, the cells were treated with FITC-

G4 (10 µg/mL), FITC-G4-FA (10 µg/mL), FITC-G4/Cy3-plasmid and FITC-G4-

FA/Cy3-plasmid polyplexes (described above) in the absence or presence of free FA

(0.5 mg/mL) at 37 ◦C for 0, 1, 2, 6, and 24 h. Then, HN12 cells were washed with

PBS for three times, resuspended using trypsin for 5-10 min, centrifuged, washed with
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PBS once, and transferred to microcentrifuge tubes. The mean fluorescence intensity

(MFI) of FITC and Cy3 of the cells were analyzed by using a Guava EasyCyte mini

flow cytometry system (Millipore, Billerica, MA) [159, 154].

For in vitro GFP transfection assessment, the cells were treated with G4-

FA/pGFP polyplexes and G4/pGFP polyplexes (described above) in the absence

of free FA at 37 ◦C for 48 h. The spent medium was replaced with the complete

medium containing 10% serum and maintained under normal growth conditions for

another 48 h. Then, HN12 cells were washed with PBS for three times, resuspended

using trypsin for 5-10 min, centrifuged, washed with PBS for three times, fixed in

4% formadehyde at room temperature for 20 min, washed with PBS for three times,

permeated with 0.1% Triton X-100 for 5 min, and washed with PBS for three times,

and incubated with 50 µg/mL of PI and 40 µg/mL of RNase at 37 ◦C for 30 min.

The GFP-expressing cell population was then analyzed by using a Guava EasyCyte

mini flow cytometry system [321].

4.3.12 Cell viability assessment

HN12 cells were seeded in a 96-well plate at a density of 10,000 cells/well and allowed

to attach overnight. For polymer cytocompatibility assessment, the cells were treated

with G4 (0-1000 µg/mL) and G4-FA (0-1000 µg/mL) at 37 ◦C for 48 h. For polyplex

cytocompatibility assessment, the cells were treated with G4/pGFP plasmid and G4-

FA/pGFP plasmid polyplexes (described above) at 37 ◦C for 48 h, followed by another

48 h culture in a medium supplemented with 10% Cosmic calf serum. At the end of

each treatment, the cell viability was determined by WST-1 cell proliferation assay

following the manufacturer’s protocol. The relative cell viability was normalized with

respect to the viability of the control PBS-treatment group. Briefly, immediately

following treatment, the spent media were removed, and the cells were incubated

with 100 µL of fresh cell culture media and 10 µL of WST-1 reagent in for 30 min.

The absorbance of each sample solution was then measured at 450 nm against a

background control as blank. The wavelength of 650 nm was used as the reference

wavelength [298, 293, 294].
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4.3.13 Western Blotting

For FR expression assessment, HN4, HN6, HN12, T98, U87, U1242, and NIH3T3

cells were seeded in the 6-well plates at a density of 20,000 cells/well. The cells were

harvested using cell lysis buffer containing protease and phosphorylase inhibitors when

they reached 80% confluence.

For gene transfection assessment, HN12 cells were first seeded in the 6-well

plates at a density of 20,000 cells/well and allowed to attach overnight. Before addi-

tion of the transfection medium, the spent medium was removed, and the cells were

washed with PBS once. The cells were then treated with G4-FA/pGFP polyplexes

and G4/pGFP polyplexes (described above) at 37 ◦C for 48 h. At the end of the GFP

transfection, the spent medium was replaced with the complete medium containing

10% serum and maintained under normal growth conditions for another 48 h. At

the end of each treatment, the cells were harvested using cell lysis buffer containing

protease and phosphorylase inhibitors.

Western blot analysis of total cellular protein was carried out following pro-

cedures described previously [298, 293, 294]. Briefly, total cell lysates (30 µg) were

separated on a 10% SDS-PAGE gel and transferred onto a polyvinylidene difluoride

(PVDF) membrane. The membrane was blocked in Tris-buffered saline (TBS) con-

taining 5% non-fat dry milk for 2 h at room temperature and then incubated in a

1:1000 dilution of primary antibody in blocking buffer overnight at 4 ◦C with shaking.

The membrane was washed with TBS containing 0.5% Tween 20 (TBST) for three

times and then incubated in a 1:3000 dilution of appropriate secondary antibody

in TBST at room temperature for 2 h. The specific antigen-antibody interactions

were detected using enhanced chemiluminescence. The protein expression of β-actin

(ACTB) was used as a loading control.

4.3.14 Statistical Analysis

The curve fitting models were compared by running Akaike information criterion

(AIC) test to determine a model that best fits experimental data using GraphPad
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Prism 5 (La Jolla, CA). Models with lower AIC values are more likely to be correct

[293, 310]. All the data were expressed as means ± standard deviation (SD) or

standard error of the mean (SEM). The statistical analysis was performed by Students

t-test for comparison. A value of p < 0.05 was considered statistically significant.

4.4 Results and Discussion

4.4.1 Relative folate receptor α (FRα) expression level

As reported, both human head and neck cancer cell line KB-3-1 and esophageal

cancer cell line EC9706 have high expression of FRα. In the current work, the FR

expression levels were evaluated in head and neck cancer cell lines and glioblastoma

cell lines. The NIH3T3 cells were used as FRα-negative control. As shown in Figure

4.1, glioblastoma T98 and U1242 cells possessed relatively high expression levels of

FRα. In contrast, all three head and neck squamous cell carcinoma HN4, HN6, and

HN12 cells possessed high expression level of FRα. Noteworthy is that HN12 cell,

derived from a primary synchronous lymph node metastasis, can be used to establish

a clinically relevant model. Therefore, HN12 cells were used in the study of drug

delivery for head and neck squamous cell carcinoma.

4.4.2 Design and synthesis of folic acid-decorated DAB-core

PAMAM dendrimers

4.4.2.1 Synthesis of G4-FA conjugates

The strategy used to synthesize FITC-G4-FA conjugates is illustrated in Scheme 4.2.

The purity of G4-FA conjugates was analyzed using HPLC. TFA was included in

the mobile phase as a counterion to neutralize dendrimer surface charges [235]. The

detection wavelength was selected at 275 nm, which was the characteristic maximum

absorption wavelength of FA according to the UV-Visible absorption spectrum shown

in Figure 4.3. Free FA has a retention time at 1.48 min (Figure 4.4a). After coupling
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Figure 4.1: Endogenous expression level of folate receptor (FR).
Total cell lysates of NIH3T3, HN4, HN6, HN12, T98, U87, and U1242 cells were
harvested at 80% confluence. The protein expression level of FR was determined
by Western blot analysis, and the expression level of β-actin (ACTB) was used as a
loading control of total cellular protein (a). Each positive FR band was normalized
to ACTB and was quantified by NIH ImageJ (b). The data represents typical one of
three experiments. The bars and error bars are mean ± SEM. n = 4.
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Figure 4.2: Synthetic scheme of FITC-G4-FA conjugate.
Synthesis of dendrimer-folic acid (G4-FA) conjugates (a). Labeling G4-FA conjugates
with FITC (b).

reaction of G4 dendrimer and FA, the HPLC chromatogram of the resulting conju-

gates displays two separated peaks at 1.02 and 1.40 min. Because G4-FA conjugates

are much more hydrophilic than free FA, G4-FA conjugates move faster than free FA

through the C18 column. Thus, the peak at 1.02 min denotes G4-FA conjugates,

whereas the peak at 1.40 min denotes unconjugated FA (Figure 4.4b). By calculating

the area under the curve (AUC), the conjugation efficiency of G4-FA was about 80%.

The conjugates were then purified using a dialysis tubing with 7,000 MWCO against

DI water. The HPLC chromatogram of the purified G4-FA conjugates exhibits only

one peak at 1.03 min (Figure 4.4c), indicating free FA was mostly removed. By

calculating the AUC, the purity of G4-FA conjugates was above 97%.

Similar, 1H NMR was employed to further confirm the presence of FA in the

G4-FA conjugates. The 1H NMR spectrum of FA is shown in Figure 4.5. The 1H

NMR spectra of purified G4-FA conjugates in DMSO-d6 and D2O are shown in Fig-

ure 4.6 and 4.7, respectively. Both 1H NMR spectra confirm the presence of the

aromatic proton peaks of FA (8.5, 7.6, 6.6 ppm) and G4.0 (multiple methylene pro-

ton peaks between 3.8 and 2.1 ppm), indicating FA was successfully conjugated onto
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Figure 4.3: Absorption spectra of folic acid (FA) and fluorescein isothio-
cyanate (FITC).
The absorption spectrum of FA and FITC were determined by ultraviolet-visible
(UV-Vis) spectroscopy.

G4 dendrimer.

UV-Visible spectroscopy was employed to determine an average number of FA

coupled to G4 dendrimer. A standard curve of FA at serial concentrations measured

at a wavelength of 275 nm was generated (Figure 4.8a). UV-Visible spectroscopy

analysis confirmed that an average of 3.5 FA molecules was successfully conjugated

onto G4 dendrimer, yielding G4-FA conjugates with a molecular weight of 15783

g/mol.

4.4.2.2 Synthesis of FITC-G4-FA and FITC-G4 conjugates

In order to determine and track intracellular uptake of G4-FA conjugates, we further

labeled G4-FA conjugates with FITC and used FITC-labeled G4 for comparison.

The detection wavelength was 485 nm, one of the characteristic maximum absorption

wavelengths of free FITC, and it has limited absorption interference with FA (Figure
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Figure 4.4: HPLC analysis of dendrimer derivatives.
FA standard (a), unpurified G4-FA conjugates (b), G4-FA conjugates after dialysis
(c), FITC standard (d), FITC-G4 conjugates after dialysis (e), and FITC-G4-FA
conjugates after dialysis (f).
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DMSO-d6 

Figure 4.5: 1H NMR spectrum of FA in DMSO-d6.

DMSO-d6 

G4 protons 

Figure 4.6: 1H NMR spectrum of G4-FA conjugates in DMSO-d6.
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D2O 

G4 protons 

Figure 4.7: 1H NMR spectrum of G4-FA conjugates in D2O.

a b 

Figure 4.8: Standard curves of FA (a) and FITC (b).
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Table 4.1: Molecular weight of dendrimer and its derivatives
Dendrimer and
its derivatives

Coupling ratios Molecular
weight (g/mol)

Moles of 10 µg of
polymers (nmol)

G4 n/a 14215 0.7035
G4-FA 1 : 3.5 15783 0.6336
FITC-G4-FA 2.3 : 1 : 3.5 16676 0.5997
FITC-G4 2.2 : 1 15070 0.6636

Abbreviation: n/a, not applicable.

4.3). HPLC analysis was applied to confirm purity of FITC-labeled dendrimers. Free

FITC has a retention time of 2.85 min (Figure 4.4d). The small peaks at retention

times of 1.73 and 2.02 min were attributed to the impurity of commercial FITC (≥

90%). The HPLC chromatogram of the purified FITC-G4-FA and FITC-G4 conju-

gates exhibits mainly one peak at 1.02 min (Figure 4.4e-f), indicating free FITC was

mostly removed from the conjugates. By calculating the AUC, the purity of FITC-

G4-FA and FITC-G4 conjugates is 97% and 95%, respectively. Because very limited

absorption of FA at absorption wavelength of 485 nm, UV-Visible spectroscopy anal-

ysis at 485 nm was employed to determine the efficiency of coupling FITC to G4-FA

conjugates and G4 dendrimer (Figure 4.8b). The results confirmed that an average

of 2.3 and 2.2 FITC molecules were successfully conjugated onto each G4-FA con-

jugate and G4 dendrimer, respectively. The molecular weight of dendrimer and its

derivatives were summarized in Table 4.1.

4.4.3 Characterization of dendrimer and its derivatives

PAMAM dendrimers generation 4 (G4) possess cationic primary amine groups at

the surface that can beused to complex nuclear acids, including plasmids and small

interference (si)RNA, and foster the cellular uptake of these nuclear acids [297]. We

first determined whether surface modification of G4 dendrimer with FA could affect

the zeta potential and particle size. DLS results showed the zeta potential of G4-

FA, FITC-G4-FA, and FITC-G4 conjugates remained positive, which is essential for

polyplexation (Figure 4.9). Noteworthy is that the zeta potential of G4-FA conjugates
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Figure 4.9: Particle sizes and zeta potentials of G4 dendrimer, G4-FA,
FITC-G4-FA, and FITC-G4 conjugates were determined by dynamic light
scattering (DLS).
The bars and error bars are means ± SD. n = 6-9. * p < 0.05, ** p < 0.01, and ***
p < 0.001 versus G4 dendrimer. ### p < 0.001 versus FITC-G4 conjugates.

was not significantly different from that of G4 dendrimer; however, the zeta potential

of FITC-G4-FA conjugates was significantly lower than that of FITC-G4 conjugates.

Generally, higher zeta potential of NPs can result higher non-specific cellular uptake

[30, 89]. Thus, the cellular uptake of FITC-G4 conjugates may be reasonably believed

to be higher than that of FITC-G4-FA conjugates in the later study. The size of

G4-FA, FITC-G4-FA, and FITC-G4 conjugates significantly increased compared to

that of G4 dendrimer (Figure 4.9), reflecting the surface modification made on the

dendrimer in this work.
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Cytocompatibility of dendrimer and its derivatives play an important role in

successful gene delivery. Our previous work showed that the cytocompatibility of

PAMAM dendrimers are dependent on multiple factors including dose, generation,

surface composition, and incubation period [319]. The current study showed both G4

dendrimer and G4-FA conjugates decreased HN12 cell viability in a dose-dependent

manner (Figure 4.10a). In details, the viabilities of HN12 cells treated with both G4

dendrimer and G4-FA conjugates at 1 µg/mL or below for 48 h were over 86% and

91%, respectively. However, the viability of HN12 cells treated with G4 dendrimer

at 10 µg/mL for 48 h reduced to 58%, whereas that the viability of HN12 cells

treated with G4-FA conjugates at 10 µg/mL for 48 h remained 89%. By plotting cell

viability against concentration in log scale, a linear regression was observed for both

G4 dendrimer and G4-FA conjugate treatment (Figure 4.10b). By calculation, the

half maximal inhibitory concentrations (IC50) of G4 dendrimer and G4-FA conjugates

were 67 µg/mL and 159 µg/mL, respectively. By converting weight concentration to

molar concentration, the IC50 of G4 dendrimer and G4-FA conjugates were 4.7 µM

and 10.1 µM, respectively (Figure 4.10c). A 2.4-fold increase (weight concentration)

or 2.1-fold increase (molar concentration) in cytocompatibility was achieved after

surface modification of G4 dendrimer with FA.

4.4.4 Characterization of polyplexes

G4-FA/pGFP polyplexes at different weight ratios were prepared (4.2). With the

information on the molecular weights and the quantities of primary amines of G4

dendrimer and G4-FA conjugate as well as the quantities of bases and phosphates of

pMAX-GFP plasmid, the molar ratios and the nitrogen/phosphate (N/P) ratios of

polyplexes were calculated and are presented in Table 4.2. The stability of polyplex

formation was characterized by a gel retardation assay to indicate the biophysical

properties of G4-FA vectors. G4-FA conjugates were complexed with p53 plasmid at

various weight ratios (0-10). According to the gel retardation assay (Figure 4.11a), at

a weight ratio of 1 or higher, the polyplexes of G4-FA/p53 plasmid remain immobile.
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Figure 4.10: Cytocompatibility of G4 dendrimer and G4-FA conjugate.
Cell viabilities of HN12 cells treated with G4 dendrimer and G4-FA conjugates at
indicated concentrations were determined by WST-1 assay and normalized to un-
treated cells (a). Concentration-response curves of G4 dendrimer and G4-FA conju-
gate were determined at the concentration of 10 µg/mL and above. Concentrations
in Log10(µg/mL) against cell viability (b), concentration in Log10(µM) against cell
viability (c). The bars/dots and error bars are means ± SD. n = 4-6.
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Table 4.2: Weight, molar, and nitrogen/phosphate (N/P) ratios of G4-FA
conjugate and G4 dendrimer to plasmid

Polyplex Weight ratio Molar ratio N/P ratio
G4-FA/pMAX-GFP 0.2 27 0.2

0.5 67 0.6
1 134 1.2
2 268 2.5
5 671 6.2
10 1342 12.3
20 2683 24.6

G4/pMAX-GFP 5 745 6.8

This result was further confirmed by using pMAX-GFP plasmid. G4-FA conjugates

were complexed with pMAX-GFP plasmid at various weight ratios (0-20). According

to the gel retardation assay (Figure 4.11b), at a weight ratio of 1 or higher, the

polyplexes of G4-FA/pGFP plasmid remain immobile. Additionally, at weight ratios

of 0.2 and 0.5, the DNA plasmid also showed retarded mobility on the gels. At

weight ratios of 10 and 20, the DNA plasmid migrated in the opposite direction on

the gels. Taken together, these results indicate that 1 is a minimal weight ratio

for tight condensing of plasmid with G4-FA conjugates. This study illustrates the

minimal weight ratio required for G4-FA vectors to neutralize the negatively charged

plasmid and form stable polyplexes.

Furthermore, the zeta potential of polyplexes was measured by DLS. pMAX-

GFP plasmid is a circular and double-stranded DNA molecule, composed of about

4700 base pairs. Each base pair contains a phosphate group, which results an overall

negative charge of DNA plasmid. As expected, pMAX-GFP plasmid has a nega-

tive zeta potential of -19 mV (Figure 4.12). At a weight ratio of 1, G4-FA/pGFP

polyplexes displayed a negative zeta potential of -22 mV, which was not significantly

different from that of pMAX-GFP plasmid. At weight ratios of 5 and 20, the zeta

potential of G4-FA/pGFP polyplexes significantly increased from -19 mV to -2 mV.

These results suggest that G4-FA/pGFP polyplexes can be formed at a weight ratio

of 1 or above; however, at a weight ratio of 1 (molar ratio of 134), the number of G4-
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G4-FA/p53-plasmid (wt/wt) 
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Figure 4.11: Gel retardation assay.
G4-FA/p53-plasmid polyplexes at weight ratios of 0, 0.2, 0.5, 1, 2, 5, and 10 (a).
G4-FA/pMAX-GFP-plasmid polyplexes at weight ratios of 0, 0.2, 0.5, 1, 5, 10, and
20 (b).
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Figure 4.12: Zeta potentials of pMAX-GFP plasmid (pGFP), G4-
FA/pGFP polyplexes at weight ratios of 1, 5, and 20, and G4/pGFP poly-
plexes at a weight ratio of 5 were determined by dynamic light scattering
(DLS).
The bars and error bars are means ± SD. n = 5-6. *** p < 0.001 versus pGFP
plasmid; # p < 0.05 versus G4-FA/pGFP polyplexes at a weight ratio of 5.

FA conjugates may be not high enough to complex the pMAX-GFP plasmid, which

results an overall negative surface charge of -22 mV. At weight ratios of 5 and 20

(molar ratio of 671 and 2683), the pMAX-GFP plasmid can be sufficiently shielded

by G4-FA conjugates in complexation, bringing the surface charge of polyplexes up

to -2 mV. In contrast, the zeta potential of G4/pGFP polyplexes at a weight ratio of

5 was determined to be 1 mV. The increased zeta potential of G4/pGFP polyplexes

may lead to a higher non-specific uptake than G4-FA/pGFP polyplexes because of

the net positive charge of polyplexes [106].

4.4.5 Intracellular uptake

The cellular uptake efficiency of nanoparticles directly affects the therapeutic effects

[190]. Fluorescent dyes labeled nanoparticles are frequently used to study cellular up-

take. Fluorescein isothiocyanate (FITC) is a common fluorescent dye for dendrimers
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labeling to study the cellular uptake behavior [109, 207, 205, 130]. We studied the

cellular uptake of FITC-labeled G4 dendrimer and G4-FA conjugate by FR-positive

HN12 cells.

HN12 cells were shown take up both FITC-G4-FA (Figure 4.13) and FITC-G4

(Figure 4.14) conjugates in a time-dependent manner. Notably, more and stronger

FITC fluorescence was observed in the cells treated with FITC-G4 conjugates than

that of the cells treated with FITC-G4-FA conjugates at each predetermined time

point. This observation is likely due to the following two reasons. As earlier de-

termined, an average of 2.3 and 2.2 FITC molecules was successfully conjugated

onto each G4-FA conjugate and G4 dendrimer, respectively. The number of FITC

molecules was close in the cells treated with FITC-G4 and FITC-G4-FA conjugates.

However, the zeta potential of FITC-G4 conjugates was higher than that of FITC-

G4-FA conjugates (Figure 4.9). As we suspected earlier, the higher zeta potential

could lead to a more fluorescence uptake in the cells treated with FITC-G4 than the

cells treated with FITC-G4-FA. On the other hand, FA, as a targeting moiety, was

conjugated onto the G4 dendrimer. The cellular uptake mechanism of G4-FA con-

jugates was suspected to be receptor-mediated endocytosis, which was different from

that of G4 dendrimer.

To confirm the fluorescence microscopy results, we quantified the cellular up-

take of FITC-G4 and FITC-G4-FA conjugates in FR-positive HN12 cells by using

flow cytometric analysis. The FITC fluorescence histogram of cells treated with

FITC-G4-FA conjugates (Figure 4.15) was similar to that of cells treated with FITC-

G4 conjugates (Figure 4.16). A distinguishable right shift was observed in the cells

treated with both conjugates in a time-dependent manner. A further right shift was

observed in the cells treated with FITC-G4 conjugates, compared to the cells treated

with FITC-G4-FA conjugates. These results indicated more and stronger FITC fluo-

rescence in the cells treated with FITC-G4 conjugates, consistently with fluorescence

microscopy results. By plotting the mean intensity of FITC against incubation time,

we determined the cellular uptake kinetics of FITC-G4 and FITC-G4-FA conjugates
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Figure 4.13: Cellular uptake of FITC-G4-FA conjugates in HN12 cells.
HN12 cells were treated with FITC-G4-FA conjugates (10 µg/mL) for 0, 1, 6, and
24 h, then fixed, counterstained with DAPI and imaged using fluorescence micro-
scope. Original magnification, 200×. The images are representative of experiments
conducted on three independent occasions.
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Figure 4.14: Cellular uptake of FITC-G4 conjugates in HN12 cells.
HN12 cells were treated with FITC-G4 conjugates (10 µg/mL) for 0, 1, 6, and 24
h, then fixed, counterstained with DAPI and imaged using fluorescence microscope.
Original magnification, 200×. The images are representative of experiments con-
ducted on three independent occasions.
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(Figure 4.17a). By curve fitting, a dose-response-stimulation [log(agonist) vs. re-

sponse - variable slope] model was found to best describe the data (Figure 4.17b).

Compared to the cells treated with FITC-G4 conjugates, the cellular uptake of FITC

in the cells treated with FITC-G4-FA conjugates reached plateau within 24 h, sug-

gesting that the mechanism of cellular uptake may be different from G4 dendrimer

to G4-FA conjugates. It is clear that the cellular uptake of FITC-G4 conjugates

is nonspecific absorptive endocytosis via electrostatic interaction between cells and

conjugates. Therefore, HN12 cells kept taking up FITC-G4 conjugates within 24 h.

In contrast, it is reasonable to hypothesize that the cellular uptake of FITC-G4-FA

conjugates is receptor-mediated endocytosis. The saturated receptor can then limit

further cellular uptake of conjugates, which causes the plateau in the uptake kinetics

curve.

According to the literature, free FA at 1 mM (i.e., about 0.5 mg/mL), has been

reported to efficiently competitively inhibit FA-conjugated nanoparticles cellular up-

take in FR-positive cells [192, 323]. To prove our hypothesis, we then used free FA (0.5

mg/mL) as a competitive inhibitor to study the cellular uptake of FITC-G4-FA and

FITC-G4 conjugates in HN12 cells. In the absence of free FA, FITC-G4-FA conjugates

were taken up by HN12 cells as FITC fluorescence in the cells was observed at 1 h-post

treatment. In the presence of free FA, limited FITC-G4-FA conjugates were taken up

by HN12 cells as very little FITC fluorescence was observed in the cells (Figure 4.18).

In contrast, in the presence and absence of free FA, FITC-G4 conjugates were taken

up by HN12 cells as FITC fluorescence was observed in the both treated cells (Figure

4.18). These results suggest that free FA was able to competitively bind to and satu-

rate FR, subsequently inhibiting cellular uptake of FITC-G4-FA conjugates in HN12

cells. However, such competitive inhibition was withdrawn in 6 h- and 24 h-treatment

(Figures 4.19, 4.20). It is likely due to two reasons: non-specific cellular uptake and

recycling of FR. First, FITC-G4-FA conjugates remained positive-charged as early

determined (Figure 4.9), which may cause non-specific cellular uptake in either FR-
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Figure 4.15: FITC fluorescence histogram of cells treated with FITC-G4-
FA conjugates.
HN12 cells were treated with FITC-G4-FA conjugates (10 µg/mL) for 0, 1, 2, 6, and
24 h. The FITC fluorescence histogram of the cells at each treatment was determined
by flow cytometry. The dot plot of cell scattering (forward verse side scattering) was
presented on the left, and the histogram of FITC intensity against cell number was
presented on the right. The histograms are representative of experiments conducted
on three independent occasions.
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Figure 4.16: FITC fluorescence histogram of cells treated with FITC-G4
conjugates.
HN12 cells were treated with FITC-G4 conjugates (10 µg/mL) for 0, 1, 2, 6, and 24
h. The FITC fluorescence histogram of the cells at each treatment was determined
by flow cytometry. The dot plot of cell scattering (forward verse side scattering) was
presented on the left, and the histogram of FITC intensity against cell number was
presented on the right. The histograms are representative of experiments conducted
on three independent occasions.
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Figure 4.17: Cellular uptake kinetics of FITC-G4 and FITC-G4-FA con-
jugates in HN12 cells.
HN12 cells were treated with FITC-G4 and FITC-G4-FA conjugates (10 µg/mL) for
0, 1, 2, 6, and 24 h. The FITC fluorescence intensity of the cells at each treatment
evaluated by flow cytometry (a). Time-response curves of FITC-G4 and FITC-G4-FA
conjugates were determined (b). The dots and error bars are means ± SD. n =3.
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positive and FR-negative cells. Second, folate or FA binds to FR, internalizes, and

gets released from FR in the acidic environment of endosomes. The FR is then trans-

ported into the cytoplasm by proton-coupled folate transporter for recycling [249].

It has been reported that folate conjugates including folate-FITC, [3H]folate, and

folate-diethylenetriaminepentaacetic acid-ethylenediamine-111indium chloride (folate-

DTPA-111In) were endocytosed as efficiently as free FA in FR-positive cells. More

interestingly, the rate of FR recycling was estimated to be slightly less than 5.7 h

for L1210A cells, and near 13.3 to 20 h for Line 01 and M109 cells [203]. Thus, to

our best knowledge, the fast recycling time of FR in HN12 cells may result the in-

crease of cellular uptake of FITC-G4-FA conjugates in the presence of free FA for 6-

and 24 h-treatment. However, this interpretation needs to be validated by additional

experiments in the future.

To confirm the fluorescence microscopy results, we quantified the cellular up-

take of FITC-G4 and FITC-G4-FA in the presence or absence of free FA by using a

series of flow cytometric analysis. Compared to the cells treated with FITC-G4-FA

conjugates in the absence of free FA, a distinguishable left shift of FITC fluorescence

was observed in the cells treated with FITC-G4-FA conjugates in the presence of

free FA for 1 h and 2 h (Figure 4.21). In contrast, there was no significant FITC

fluorescence shift in the cells treated with FITC-G4 conjugates in the absence and

presence of free FA (Figure 4.22). By plotting mean intensity of FITC against in-

cubation time, we observed a significant decrease of mean intensity of FITC in the

cells treated with FITC-G4-FA in the presence of free FA, compared to that in the

absence of free FA. In contrast, no significant difference of mean intensity of FITC

was observed in the cells treated with FITC-G4 conjugates in the absence and pres-

ence of free FA (Figure 4.23). To further validate the cellular uptake mechanism of

FITC-G4-FA conjugates, we quantified the cellular uptake efficiency of FITC-G4-FA

conjugates in the presence of various concentrations of free FA by using a series of

flow cytometric analysis. From the FITC fluorescence histogram of cells incubated
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Figure 4.18: Effect of free FA on cellular uptake of FITC-G4 and FITC-
G4-FA conjugates in HN12 cells.
HN12 cells were treated with FITC-G4 and FITC-G4-FA conjugates (10 µg/mL) for
1 h in the absence or presence of free FA (0.5 mg/mL), then fixed, counterstained with
DAPI and imaged using fluorescence microscope. Original magnification, 200×. The
images are representative of experiments conducted on three independent occasions.
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Figure 4.19: Effect of free FA on cellular uptake of FITC-G4 and FITC-
G4-FA conjugates in HN12 cells.
HN12 cells were treated with FITC-G4 and FITC-G4-FA conjugates (10 µg/mL) for
6 h in the absence or presence of free FA (0.5 mg/mL), then fixed, counterstained with
DAPI and imaged using fluorescence microscope. Original magnification, 200×. The
images are representative of experiments conducted on three independent occasions.
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Figure 4.20: Effect of free FA on cellular uptake of FITC-G4 and FITC-
G4-FA conjugates in HN12 cells.
HN12 cells were treated with FITC-G4 and FITC-G4-FA conjugates (10 µg/mL) for
24 h in the absence or presence of free FA (0.5 mg/mL), then fixed, counterstained
with DAPI and imaged using fluorescence microscope. Original magnification, 200×.
The images are representative of experiments conducted on three independent occa-
sions.
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with FITC-G4-FA conjugates, a distinguishable left shift of FITC fluorescence was

observed in the cells treated with FITC-G4-FA conjugates (Figure 4.24). By plot-

ting mean intensity of FITC against free FA concentration, we observed a significant

decrease in mean intensity of FITC in the presence of free FA in a dose-dependent

manner (Figure 4.25). Taken together, our results demonstrate that FA-decorated

dendrimers can induce cellular uptake through FR-mediated endocytosis, which is

highly FR-dependent. Free FA can competitively bind to FR on the cell surface in

early incubation time, and subsequently inhibit cellular uptake of FITC-G4-FA con-

jugates. The expression level and recycling time of FR on cell membrane may serve

as a rate-limiting step in cellular uptake of G4-FA conjugates, which is different as

that of naive G4 dendrimer. Additionally, positive-charged FITC-G4-FA conjugate

may still be able to trigger cellular uptake via electrostatic interaction. However, the

precise mechanism of FR transport into cells remains yet to be resolved.

To understand the intracellular trafficking pattern of the internalized den-

drimer/plasmid polyplexes in living cells, we performed colocalization assays to as-

sess the distribution of the polyplexes in HN12 cells at various time points post-

transfection using fluorescence microscopy. FITC-labeled G4-FA conjugates and a

Cy3-labeled plasmid were employed for in vitro trafficking of vector and plasmid,

respectively. Time lapse imaging and colocalization results qualitatively show a time-

dependent internalization of G4-FA/plasmid polyplexes (Figure 4.26). As time pro-

gressed, more polyplexes of G4-FA/plasmid were internalized. At noticed, both FITC

and Cy3 fluorescence was observed in more than 90% of HN12 cells at 24 h-post trans-

fection, indicating 24 h transfection could give a good transfection efficiency using

G4-FA conjugates as vectors.

Theoretically, the internalization of dendrimer occurs mainly through a clathrin-

and caveolae-mediated energy-dependent endocytosis and partly through marcopinocy-

tosis. Dendrimers can then function as a proton sponge to facilitate the escape from
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Figure 4.21: Effect of free FA on cellular uptake of FITC-G4-FA conjugates
in HN12 cells.
HN12 cells were treated with FITC-G4-FA conjugates (10 µg/mL) for 1 and 2 h in
the absence or presence of free FA (0.5 mg/mL). The FITC fluorescence histogram
of the cells at each treatment was determined by flow cytometry. The dot plot of cell
scattering (forward verse side scattering) was presented on the left, and the histogram
of FITC intensity against cell number was presented on the right. The histograms
are representative of experiments conducted on three independent occasions.
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Figure 4.22: Effect of free FA on cellular uptake of FITC-G4 conjugates
in HN12 cells.
HN12 cells were treated with FITC-G4 conjugates (10 µg/mL) for 1 and 2 h in the
absence or presence of free FA (0.5 mg/mL). The FITC fluorescence histogram of
the cells at each treatment was determined by flow cytometry. The dot plot of cell
scattering (forward verse side scattering) was presented on the left, and the histogram
of FITC intensity against cell number was presented on the right. The histograms
are representative of experiments conducted on three independent occasions.
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Figure 4.23: Effect of free FA on cellular uptake kinetics of FITC-G4 and
FITC-G4-FA conjugates in HN12 cells.
HN12 cells were treated with FITC-G4 and FITC-G4-FA conjugates (10 µg/mL) for
1 and 2 h in the absence or presence of free FA (0.5 mg/mL). The FITC fluorescence
intensity of the cells treated with FITC-G4-FA conjugates was evaluated by flow
cytometry (a). The FITC fluorescence intensity of the cells treated with FITC-G4
conjugates was evaluated using flow cytometric analyses (b). The dots and error bars
are means ± SD. n = 6. * p < 0.05 and ** p < 0.01 versus FITC-G4-FA conjugates
at each indicated time point.
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Figure 4.24: Effect of free FA on cellular uptake of FITC-G4-FA conjugates
in HN12 cells.
HN12 cells were treated with FITC-G4-FA conjugates (10 µg/mL) for 2 h in the
absence or presence of free FA (0.1, 0.5, 1, and 2 mg/mL). The FITC fluorescence
histogram of the cells at each treatment was determined by flow cytometry. The
dot plot of cell scattering (forward verse side scattering) was presented on the left,
and the histogram of FITC intensity against cell number was presented on the right.
The histograms are representative of experiments conducted on three independent
occasions.
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Figure 4.25: Effect of free FA on cellular uptake of FITC-G4-FA conjugates
in HN12 cells.
HN12 cells were treated with FITC-G4-FA conjugates (10 µg/mL) for 2 h in the
absence or presence of free FA (0.1, 0.5, 1, and 2 mg/mL). The FITC fluorescence
intensity of the cells treated with FITC-G4-FA conjugates was evaluated by flow
cytometry. The bars and error bars are means ± SD. n = 6. ### p < 0.001 versus
no treatment; * p < 0.05, ** p < 0.01, and p < 0.001 versus FITC-G4-FA conjugates
in the absence of free FA.
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Figure 4.26: Cellular uptake of FITC-G4-FA/Cy3-plasmid polyplexes in
HN12 cells.
HN12 cells were treated with FITC-G4-FA/Cy3-plasmid polyplexes (5:1, µg/µg) for
0, 1, 6, and 24 h, then fixed, counterstained with DAPI and imaged using fluores-
cence microscope. Original magnification, 200×. The images are representative of
experiments conducted on three independent occasions.
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endosomes and lysosomes. The proton sponge mechanism occurs because dendrimers

contain a large number of secondary and tertiary amines. These amines enable the

adsorption of protons released from ATPase and subsequently cause osmotic swelling

and rupture of the endosome membrane to release the entrapped dendrimers [297].

To further investigate the mechanisms of G4-FA conjugates for gene delivery, we em-

ployed confocal microscopy to distribution of polyplexes and dissociation of plasmid

and G4-FA conjugates from polyplexes. At 24 h-post transfection, both FITC and

Cy3 fluorescence were observed within HN12 cells and close to the nuclei (Figure 4.27),

which was consistent with fluorescence microscopy (Figure 4.26). Moreover, colocal-

ization of FITC-G4-FA conjugates and Cy3-plasmid yields a yellow signal because of

the overlay of FITC (green signal) and Cy3 (red signal). We clearly observed yellow,

green, and red signals (Figure 4.28), indicating the dissociation of G4-FA/plasmid

polyplexes could occur at or after 24 h-post transfection.

To confirm both fluorescence and confocal microscopy results, we quantified the

cellular uptake of G4-FA/Cy3-plasmid and G4/Cy3-plasmid polyplexes in HN12 cells

by using flow cytometric analysis. The Cy3 fluorescence histogram of cells incubated

with G4-FA/Cy3-plasmid polyplexes (Figure 4.29) was similar to that of cells incu-

bated with G4/Cy3-plasmid polyplexes (Figure 4.30). A distinguishable right shift

was observed in the cells treated with both polyplexes in a time-dependent manner.

By plotting the mean intensity of Cy3 against incubation time, we determined the

cellular uptake kinetics of G4-FA/Cy3-plasmid and G4/Cy3-plasmid polyplexes (Fig-

ure 4.31a). By curve fitting, a dose-response-stimulation [log(agonist) vs. response

- variable slope] model was found to best describe the data (Figure 4.31b). The ki-

netics of cellular uptake of G4-FA/Cy3-plasmid and G4/Cy3-plasmid polyplexes was

different, which was similar to the kinetics of cellular uptake of FITC-G4-FA and

FITC-G4 conjugates (Figure 4.17), suggesting that the mechanism of cellular up-

take could be different from G4-FA/plasmid to G4/plasmid polyplexes. The cellular

uptake of G4/plasmid polyplexes is nonspecific absorptive endocytosis via electro-

static interaction between cells and polyplexes. Therefore, HN12 cells kept taking up
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Figure 4.27: Intracellular trafficking of FITC-G4-FA/Cy3-plasmid poly-
plexes in HN12 cells.
HN12 cells were treated with FITC-G4-FA/Cy3-plasmid polyplexes (5:1, µg/µg) for
24 h, then fixed, counterstained with DAPI and imaged using confocal microscope.
Original magnification, 630×. The images are representative of experiments con-
ducted on three independent occasions.
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FITC-G4-FA/Cy3-plasmid 24 h 

Figure 4.28: Intracellular trafficking of FITC-G4-FA/Cy3-plasmid poly-
plexes in HN12 cells.
HN12 cells were treated with FITC-G4-FA/Cy3-plasmid polyplexes (5:1, µg/µg) for
24 h, then fixed, counterstained with DAPI and imaged using confocal microscope.
Original magnification, 630×. The images are representative of experiments con-
ducted on three independent occasions.
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G4/plasmid polyplexes. In contrast, it is reasonable to hypothesize that the cellular

uptake of G4-FA/plasmid polyplexes is receptor-mediated endocytosis. The saturated

receptor can then limit further cellular uptake of polyplexes, which causes the plateau

of uptake curve.

To prove our hypothesis, we quantified the cellular uptake of G4-FA/Cy3-

plasmid and G4/Cy3-plasmid polyplexes in the presence or absence of free FA. Com-

pared to the cells treated with G4-FA/Cy3-plasmid in the absence of free FA, a

distinguishable left shift of Cy3 fluorescence was observed in the cells treated with

G4/Cy3-plasmid polyplexes in the presence of free FA (0.5 mg/mL) for 1 h and 2 h

(Figure 4.32). In contrast, there was no distinguishable Cy3 fluorescence shift in the

cells treated with G4/Cy3-plasmid polyplexes in the absence and presence of free FA

(Figure 4.33). By plotting mean intensity of Cy3 against incubation time, we observed

a significant decrease of mean intensity of Cy3 in the presence of free FA, compared

to that in the absence of free FA, in the cells treated with either G4-FA/Cy3-plasmid

or G4/Cy3-plasmid polyplexes (Figure 4.34). However, more predominant inhibition

was observed in the cells treated with G4-FA/Cy3-plasmid than G4/Cy3-plasmid

polyplexes in the presence of free FA (Figure 4.34). Additionally, the inhibition

of G4-FA/Cy3-plasmid in HN12 cells by free FA was more predominant than that

of FITC-G4-FA conjugates (Figure 4.23), most likely because dendrimer/plasmid

complexation neutralized zeta potential of G4-FA (Figure 4.9, 4.12), which signifi-

cantly reduced the non-specific cellular uptake. These results clearly demonstrate

that FA-decorated dendrimer/plasmid polyplexes can trigger cellular uptake through

FR-mediated endocytosis. Free FA can competitively bind to FR on the cell surface

in early incubation time, and subsequently inhibit cellular uptake of G4-FA/plasmid

polyplexes. Again, the expression level and recycling time of FR on cell membrane

may serve as a rate-limiting step in cellular uptake of G4-FA/plasmid polyplexes,

which is different as that of G4/plasmid polyplexes.
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Figure 4.29: Cy3 fluorescence histogram of cells treated with G4-FA/Cy3-
plasmid polyplexes.
HN12 cells were treated with G4-FA/Cy3-plasmid polyplexes (5:1, µg/µg) for 0, 1,
2, 6, and 24 h. The Cy3 fluorescence histogram of the cells at each treatment was
determined by flow cytometry. The dot plot of cell scattering (forward verse side
scattering) was presented on the left, and the histogram of FITC intensity against cell
number was presented on the right. The histograms are representative of experiments
conducted on three independent occasions.
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Figure 4.30: Cy3 fluorescence histogram of cells treated with G4/Cy3-
plasmid polyplexes.
HN12 cells were treated with G4/Cy3-plasmid polyplexes (5:1, µg/µg) for 0, 1, 2,
6, and 24 h. The Cy3 fluorescence histogram of the cells at each treatment was
determined by flow cytometry. The dot plot of cell scattering (forward verse side
scattering) was presented on the left, and the histogram of FITC intensity against cell
number was presented on the right. The histograms are representative of experiments
conducted on three independent occasions.
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Figure 4.31: Cellular uptake kinetics of G4/Cy3-plasmid and G4-FA/Cy3-
plasmid polyplexes in HN12 cells.
HN12 cells were treated with G4/Cy3-plasmid and G4-FA/Cy3-plasmid polyplexes
(5:1, µg/µg) for 0, 1, 2, 6, and 24 h. The Cy3 fluorescence intensity of the cells at
each treatment evaluated by flow cytometry (a). Time-response curves of FITC-G4
and FITC-G4-FA conjugates were determined (b). The dots and error bars are means
± SD. n = 5-6.
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Figure 4.32: Effect of free FA on cellular uptake of G4-FA/Cy3-plasmid
polyplexes in HN12 cells.
HN12 cells were treated with G4-FA/Cy3-plasmid polyplexes (5:1, µg/µg) for 1 and 2
h in the absence or presence of free FA (0.5 mg/mL). The Cy3 fluorescence histogram
of the cells at each treatment was determined by flow cytometry. The dot plot of cell
scattering (forward verse side scattering) was presented on the left, and the histogram
of FITC intensity against cell number was presented on the right. The histograms
are representative of experiments conducted on three independent occasions.
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Figure 4.33: Effect of free FA on cellular uptake of G4/Cy3-plasmid poly-
plexes in HN12 cells.
HN12 cells were treated with G4/Cy3-plasmid polyplexes (5:1, µg/µg) for 1 and 2 h
in the absence or presence of free FA (0.5 mg/mL). The Cy3 fluorescence histogram
of the cells at each treatment was determined by flow cytometry. The dot plot of cell
scattering (forward verse side scattering) was presented on the left, and the histogram
of FITC intensity against cell number was presented on the right. The histograms
are representative of experiments conducted on three independent occasions.
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Figure 4.34: Effect of free FA on cellular uptake kinetics of G4/Cy3-
plasmid and G4-FA/Cy3-plasmid polyplexes in HN12 cells.
HN12 cells were treated with HN12 cells were treated with G4/Cy3-plasmid and G4-
FA/Cy3-plasmid polyplexes (5:1, µg/µg) for 1 and 2 h in the absence or presence
of free FA (0.5 mg/mL). The Cy3 fluorescence intensity of the cells treated with
G4-FA/Cy3-plasmid polyplexes was evaluated by flow cytometry (a). The Cy3 fluo-
rescence intensity of the cells treated with G4/Cy3-plasmid polyplexes was evaluated
by flow cytometry (b). The dots and error bars are means ± SD. n = 5-6. ** p <
0.01 versus the treatment in the absence of free FA at each indicated time point.
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Lastly, we setup a co-culture model, which contained FR-positive HN12 cells

and FR-negative U87 cells, to further illustrate that cellular uptake of G4-FA/plasmid

polyplexes is FR-dependent. In order to clearly identify HN12 cells and U87 cells, we

hereby chose HN12 cells with YFP expression (HN12-YFP). As we expected, G4/Cy3-

plasmid polyplexes were taken up by both HN12-YFP cells and U87 cells at 6 h-post

transfection (Figure 4.35). No difference of polyplex uptake level was observed be-

tween HN12-YFP cells and U87 cells. In contrast, G4-FA/Cy3-plasmid polyplexes

were most taken up by HN12-YFP cells at 6 h-post transfection (Figure 4.35). By

calculating the percentage of cells which took up polyplexes, we found 92% HN12-

YFP cells and 89% U87 cells took up G4/Cy3-plasmid polyplexes (Figure 4.36). No

significant difference in cell percentage was observed between HN12-YFP cells and

U87 cells. In contrast, we found 84% HN12-YFP cells but only 25% U87 cells took

up G4-FA/Cy3-plasmid polyplexes (Figure 4.36). The uptake of G4-FA/Cy3-plasmid

polyplexes in HN12-YFP cells was significant more than that in U87 cells. At 24 h-

post transfection, a high uptake of G4/Cy3-plasmid polyplexes was observed in both

HN12-YFP and U87 cells (Figure 4.37). However, the uptake of G4-FA/Cy3-plasmid

polyplexes was higher in HN12-YFP cells than U87 cells as the more and stronger Cy3

fluorescence was colocalized with YFP fluorescence (Figure 4.37). Taken together, our

results clearly demonstrate that FA decorated dendrimer/plasmid polyplexes can trig-

ger cellular uptake through FR-mediated endocytosis which is highly FR-dependent.

G4-FA/plasmid polyplexes are preferentially taken up by FR-postive cells compared

to FR-negative cells. According to our early calculation (Table 4.2), the molar ratio of

G4-FA to plasmid at a weight ratio of 5 is 671. Most likely, several G4-FA conjugates

were coated onto one plasmid, which may yield a FA-decorated dendrimer-plasmid

micelle. Based on our best understanding, plasmid does not shield FA on the den-

drimer surface, which makes polyplexes retain targeting ability, same as FA-decorated

dendrimers.
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Figure 4.35: Cellular uptake of FITC-G4-FA/Cy3-plasmid polyplexes in
the coculture model.
HN12 cells were cocultured with U87 cells at same seeding density. The cells were
treated with FITC-G4-FA/Cy3-plasmid polyplexes (5:1, µg/µg) for 6 h, then fixed,
counterstained with DAPI and imaged using fluorescence microscope. Original mag-
nification, 200×. The images are representative of experiments conducted on three
independent occasions.
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Figure 4.36: Cellular uptake of FITC-G4-FA/Cy3-plasmid polyplexes in
the coculture model.
HN12-YFP cells were cocultured with U87 cells at same seeding density. The cells
were treated with FITC-G4-FA/Cy3-plasmid polyplexes (5:1, µg/µg) for 6 h, then
fixed, counterstained with DAPI and imaged using fluorescence microscope. The
number of HN12-YFP cells and U87 cells transfected with Cy3-plasmid were counted
and normalized to the total cell number for each cell line from 9 randomly selected
fields. The bars and error bars are means ± SEM. n = 9. *** p < 0.001 versus
HN12-YFP cells.

4.4.6 Transfection efficiency of polyplexes

By understanding the transfection mechanism, we tested the transfection efficiency of

G4-FA/plasmid polyplexes. The in vitro gene transfection efficiency of G4-FA conju-

gates was evaluated using HN12 cells with GFP and YFP plasmid as reporters. To as-

certain whether the use of targeting moiety FA would result in improved gene transfec-

tion, G4-mediated gene transfection was evaluated for direct comparison. Generally,

increasing vector to plasmid ratio very likely augments gene transfection efficiency,

but cytotoxicity of the vector may also increase at high concentrations, particularly

for PEI, which has high toxicity [321]. Therefore, gene transfection of the vectors

should be evaluated in conjunction with their potential toxic effects on transfected

cells. G4-FA conjugates were complexed with GFP plasmid or p53 plasmid at a weight

ratio of 1:1, 5:1, and 20:1, which were shown to generate stable complexation in gel

retardation assay (Figure 4.11). The transfection efficiency was evaluated using GFP

and YFP expression, which was qualitatively illustrated by fluorescence microscopy

and quantified by both flow cytometery and Western blotting. The cell viability after
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Figure 4.37: Cellular uptake of FITC-G4-FA/Cy3-plasmid polyplexes in
the coculture model.
HN12 cells were cocultured with U87 cells at same seeding density. The cells were
treated with FITC-G4-FA/Cy3-plasmid polyplexes (5:1, µg/µg) for 24 h, then fixed,
counterstained with DAPI and imaged using fluorescence microscope. Original mag-
nification, 200×. The images are representative of experiments conducted on three
independent occasions.
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transfection was assessed as well.

The fluorescence images of GFP-expressing HN12 cells were obtained follow-

ing transfection (Figure 4.38). It is apparent that G4-FA/pGFP polyplexes at weight

ratios of 1 and 5 showed the highest percentage of transfected HN12 cells with strong

fluorescence. However, G4-FA/pGFP polyplexes at a weight ratio of 20 displayed a

relatively low percentage of transfected HN12 cells. In contrast, G4/pGFP polyplexes

at a weight ratio of 5 also yielded a low percentage of transfected HN12 cells with

slightly low fluorescence intensity. To confirm the fluorescence microscopy results, we

applied flow cytometry analysis to quantify the proportion of GFP-transfected HN12

cells. Compared to the cells treated with PBS, a distinguishable right shift of GFP

fluorescence was observed in the cells treated with G4-FA/pGFP and G4/pGFP poly-

plexes (Figure 4.39). Noteworthy is that the cells treated with G4-FA/pGFP poly-

plexes at weight ratios of 1 and 5 displayed more both PI and GFP positive cells than

those treated with G4-FA/pGFP polyplexes at a weight ratio of 20 and G4/pGFP

polyplexes at a weight ratio of 5. Quantitative analysis revealed that the propor-

tion of HN12 cells transfected was 14.9%, 22.6%, 6.8%, and 6.4% by G4-FA/pGFP

polyplexes at weight ratios of 1, 5, 20, and G4/pGFP polyplexes at a weight ratio

of 5, respectively (Figure 4.40). Among the presented transfection conditions, G4-

FA/pGFP polyplexes at a weight ratio of 5 showed the highest transfection efficiency

in HN12 cells. The transfection efficiency of G4-FA/pGFP polyplexes was 3.5 times

that of non-targeting G4/pGFP polyplexes at the same weight ratio. To further con-

firm the fluorescence microscopy and flow cytometry results, we employed Western

blot analysis to quantify the YFP expression levels in the transfected HN12 cells.

Western blot analysis confirmed that G4-FA/pYFP polyplexes at weight ratios of 1

and 5 had the highest transfection efficiency in terms of the ability to induce YFP

expression in HN12 cells (Figure 4.41). G4-FA/pYFP polyplexes resulted in an in-

crease of 72% in the overall amount of YFP expressed in HN12 cells as compared to

non-targeting G4/pYFP polyplexes at the same weight ratio.

104



G4-FA/pGFP 

(5:1, wt/wt) 

G4-FA/pGFP 

(20:1, wt/wt) 

G4/pGFP 

(5:1, wt/wt) 

G4-FA/pGFP 

(1:1, wt/wt) 

PBS 

Figure 4.38: In vitro transfection efficacy of polyplexes.
HN12 cells were treated with G4-FA/pMAX-GFP plasmid (pGFP) polyplexes at
weight ratios of 1, 5, and 20, and G4/pGFP polyplexes at a weight ratio of 5 for 48 h,
followed by another 48 h culture. The cells treated with PBS were used as negative
control. Then, the cells were fixed, counterstained with DAPI, and imaged using
fluorescence microscope. Original magnification, 200×. The images are representative
of experiments conducted on three independent occasions.
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Figure 4.39: In vitro transfection efficacy of polyplexes.
HN12 cells were treated with G4-FA/pMAX-GFP plasmid (pGFP) polyplexes at
weight ratios of 1, 5, and 20, and G4/pGFP polyplexes at a weight ratio of 5 for 48 h,
followed by another 48 h culture. The cells treated with PBS were used as negative
control. Then, the cells were fixed and counterstained with PI. The GFP expression
was evaluated by flow cytometry. Dot plot of cell scattering (forward scattering
verse green fluorescence intensity) was presented on the left, and the dot plot of
cell scattering (green fluorescence intensity verse PI intensity) was presented on the
right. The images are representative of experiments conducted on three independent
occasions.
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Figure 4.40: In vitro transfection efficiency of polyplexes.
HN12 cells were treated with G4-FA/pMAX-GFP plasmid (pGFP) polyplexes at
weight ratios of 1, 5, and 20, and G4/pGFP polyplexes at a weight ratio of 5 for
48 h, followed by another 48 h culture. The cells treated with PBS were used as
negative control. Then, the cells were fixed, counterstained with PI, and analyzed
by flow cytometry. The bars and error bars are means ± SD. n = 8. *** p < 0.001
versus cells treated with PBS; ### p < 0.001 versus cells treated with G4/pGFP
polyplexes at a weight ratio of 5.
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Figure 4.41: In vitro transfection efficiency of polyplexes.
HN12 cells were treated with G4-FA/pCEFL-YFP plasmid (pYFP) polyplexes at
weight ratios of 1, 5, and 20, and G4/pYFP polyplexes at a weight ratio of 5 for
48 h, followed by another 48 h culture. The cells treated with PBS were used as
negative control. The protein expression level of YFP was determined by Western
blot analysis, and the expression level of β-actin (ACTB) was used as a loading
control of total cellular protein (a). Each positive YFP band was normalized to
ACTB and was quantified by NIH ImageJ (b). The data represents typical one of
three experiments. The bars and error bars are mean ± SEM. n = 5. *** p < 0.001
versus cells treated with PBS; ### p < 0.001 versus cells treated with G4/pGFP
polyplexes at a weight ratio of 5.
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Taken together, our current work suggests that G4-FA/plasmid polyplexes at

a weight ratio of 5 possess the highest transfection efficiency in HN12 cells in terms

of transfected cell proportion and transgene expression. Increasing vector to plasmid

ratio does not necessarily augment gene transfection efficiency for G4-FA conjugates.

As early described previously, free FA works as a competitive ligand to inhibit up-

take of G4-FA/Cy3-plasmid polyplexes in HN12 cells (Figure 4.32, 4.33, 4.34). Most

likely, increasing vector to plasmid ratio yields excess amount of G4-FA conjugates

in the polyplexes, which, in turn, function as competitive ligands to bind FR, and

subsequently inhibit uptake of G4-FA/plasmid polyplexes in HN12 cells. Our results

indicate that FA-decorated G4/plasmid polyplexes significantly increase transfection

efficiency in HN12 cells in terms of transfected cell proportion and transgene expres-

sion. However, these results raised another question why G4/Cy3-plasmid polyplexes

possessed higher cellular uptake (Figure 4.13, 4.14, 4.15, 4.16, 4.17) but lower trans-

fection efficiency in HN12 cells than G4-FA/Cy3-plasmid polyplexes (Figure 4.38,

4.39, 4.40, 4.41). One possibility is that higher cellular uptake may yield higher

cytotoxicity, which can compromise overall transfection efficiency.

To answer this question, we evaluated the cytocompatibility of polyplexes pre-

pared at various weight ratios by using WST-1 assay. In our previous work, HN12 cells

transfected with G4/pGFP polyplexes at a weight ratio of 100 showed a decrease of

32% in cell viability compared to untreated controls. In the current study, HN12 cells

transfected with G4/pGFP polyplexes at a weight ratio of 5 also displayed a decrease

of 16% in cell viability compared to PBS-treated cells (Figure 4.42). The difference

could be explained as following. According to our previous work, HN12 cells were

transfected with 100 µg of G4 dendrimer complexed with 1 µg of GFP plasmid for 1

day followed by 2 days culture, which led to a decrease of 32% in cell viability. Here,

HN12 cells were transfected with 10 µg of G4 dendrimer complexed with 2 µg of GFP

plasmid for 2 days followed by 2 days culture, which led to a decrease of 16% in cell

viability. The overall amount of G4 dendrimer used in current study was one tenth

of that in previous work, but transfection time was twice as long as previous work.

Therefore, the cell viability in HN12 cells transfected with G4/pGFP polyplexes was
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higher in the current work. In contrast, G4-FA/pGFP polyplexes were more cyto-

compatible than G4/pGFP polyplexes. HN12 cells transfected with G4-FA/pGFP

polyplexes at weight ratios of 1, 5, and 20 showed a cell viability of 110%, 102%, and

83%, respectively, compared to PBS-treated cells (Figure 4.42). The decrease in cell

viability in HN12 cells transfected with G4-FA/pGFP polyplexes was only observed

at a weight ratio of 20. By comparing G4-FA/pGFP polyplexes with G4/pGFP poly-

plexes at the same weight ratio, HN12 cells transfected with G4-FA/pGFP polyplexes

possessed significantly higher cell viability than the cells transfected with G4/pGFP

polyplexes. This result agrees well with the cytocompatibility result of G4 and G4-FA

vehicles alone that G4-FA conjugates were more cytocompatible than G4 dendrimer

(Figure 4.10). Our early results suggest that the cellular uptake of G4-FA conju-

gates and G4-FA/plasmid polyplexes is via FR-mediated endocytosis. Therefore, the

saturated FR on cell membrane may limit cellular uptake of G4-FA conjugates and

G4-FA/plasmid polyplexes in high FR-expression cells, such as HN12 cells (Figure

4.13, 4.14, 4.15, 4.16, 4.17 and Figure 4.29, 4.30, 4.31). As a result, the cytocom-

patibility of G4-FA/plasmid polyplexes was enhanced (Figure 4.42), which in turn

increased overall transfection efficiency in HN12 cells (Figure 4.38, 4.39, 4.40, 4.41).

4.5 Conclusions

FA-conjugated PAMAM dendrimer generation 4 (G4-FA) conjugates were success-

fully synthesized and evaluated as a new vector. G4-FA conjugates could complex

tightly with plasmid DNA to form G4-FA/DNA polyplexes. The cellular uptake of

G4-FA/DNA polyplexes was in a FR-dependent manner. Both free FA and excess G4-

FA conjugates could competitively inhibit cellular uptake of G4-FA/DNA polyplexes.

The transfection efficiency of G4-FA/DNA polyplexes is higher at a weight ratio of 5

than that of 1 and 20. At the same weight ratio of 5, the transfection efficiency of G4-

FA/DNA polyplexes is higher than that of non-targeting G4/DNA polyplexes. This

work has demonstrated that FA decoration on dendrimer/DNA polyplexes allows ac-
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Figure 4.42: Cytocompatibility of polyplexes.
HN12 cells were treated with G4-FA/pMAX-GFP plasmid (pGFP) polyplexes at
weight ratios of 1, 5, and 20, and G4/pGFP polyplexes at a weight ratio of 5 for
48 h, followed by another 48 h culture. The cells treated with PBS were used as
negative control. Cell viability of HN12 cells treated with polyplexes was determined
by WST-1 assay and normalized to the cells treated with PBS. The bars and error
bars are means ± SD. n = 3. ** p < 0.01 *** p < 0.001 versus cells treated with
PBS; ## p < 0.01 versus cells treated with G4/pGFP polyplexes at a weight ratio
of 5.
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tive targeting delivery, reduces cytotoxicity, and results in enhanced gene transfection

efficiency.
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Chapter 5

Folic Acid-Decorated PAMAM

Dendrimer for Targeted Gene

Delivery: In Vivo Studies for Head

and Neck Cancer

Preface: This chapter has been prepared as a research article.

Leyuan Xu, W. Andrew Yeudall, Hu Yang

5.1 Abstract

To date, head and neck cancer presents high morbidity and low rates of survival.

Cancer gene therapy is regarded as a promising approach but encounters delivery

challenges. In this work, folic acid-conjugated polyamidoamine dendrimer genera-

tion 4 (G4-FA) conjugates were investigated for in vivo targeted delivery of siRNA

against vascular endothelial growth factor A (siVEGFA) for cancer gene therapy.

G4-FA conjugates were complexed with siVEGFA to form G4-FA/siVEGFA poly-

plexes. The zeta potential of G4-FA/siVEGFA polyplexes was characterized by DLS,

and the in vitro knockdown efficiency was determined by real-time PCR and ELISA.

Near infrared fluorescence dye was conjugated onto G4-FA conjugates (NIR-G4-FA)

113



for biodistribution imaging. The therapeutic efficacy of G4-FA/siVEGFA polyplexes

was evaluated in a flank xenograft model of head and neck cancer. The level of an-

giogenesis in the tumor was analyzed by immunohistochemical staining of CD31. It

was found G4-FA/siVEGFA polyplexes significantly knocked down VEGFA mRNA

expression and reduced VEGFA protein release in HN12 cells. In the HN12 tumor-

bearing nude mice, NIR-G4-FA conjugates were preferentially taken up by the tumor

and retained in the tumor for at least 21 days via intratumoral (i.t.) administra-

tion. Two-dose administration of G4-FA/siVEGFA polyplexes significantly inhibited

tumor growth by lowering tumor angiogenesis over an observation period of 3 weeks.

These results show promise of using G4-FA conjugates for head and neck cancer gene

delivery.

5.2 Introduction

Head and neck cancer includes malignancies arising in the mucosal surfaces of the

oral cavity, pharynx and larynx, and is generally referred to as head and neck squa-

mous cell carcinomas (HNSCC) [49]. HNSCC is the sixth most prevalent cancers

in mankind and presents high morbidity and low rates of survival [22]. Treatment

of HNSCC frequently requires multi-modality intervention involving surgical, medi-

cal, and radiation oncology [124]. These conventional therapies have been used for

decades in HNSCC but they have several limitations. Surgery may cause disfigure-

ment and reduce patient quality of life. Concurrent chemotherapy and radiation may

lead to severe toxicity [57, 264]. The toxicities of conventional therapies are in large

part due to their non-selective nature. Molecular targeted therapies are therefore in

development with the goal of developing selective approaches to inhibit the growth

of HNSCC cells.

To date, small-molecular-weight anticancer drugs remain dominant on the

pharmaceutical market. Most anticancer drugs are designed to target DNA repli-

cation and cell division, subsequently causing cytotoxicity or apoptosis in cells. How-

ever, lack of tumor specificity is the common problem associated with this type of an-
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ticancer drugs and causes poor clinical outcomes. Some anticancer drugs are designed

to target cell signaling intermediates which contribute to cancer growth. However,

development of acquired drug resistance is the common problem associated with this

type of anticancer drugs and often leads to relapse [46]. Discovery and development

of new cytotoxic agents for cancer therapy remains a key focus, but modification of

existing drugs to improve their specificity and potency is also an important approach

for anticancer chemotherapy.

Because cancer is an acquired genetic disorder, gene therapy may provide

highly effective treatment that is precisely tailored to the gene structure of each

tumor, which in turn reduces systemic toxicity [20]. Cancer gene therapy can be

used in different approaches, such as mutation correction, enhancement of immune

response against cancer cells, overexpression of suicide proteins and enzymes, RNA

interference (RNAi), and antiangiogenesis [153]. Numerous suicide genes have been

found in the laboratory, and some have undergone clinical trials, including tumor

necrosis factor α (TNFα), TNF-related apoptosis-inducing ligand (TRAIL), caspase-

9, and B-cell lymphoma 2 (Bcl-2)-interacting killer (Bik) [111]. Next, a paradigm

shift in design of anticancer therapeutics has been brought about by groundbreak-

ing discovery-RNAi. In the last decade, RNAi, especially small interference RNA

(siRNA), is rapidly developed as an effective therapeutics for cancer therapy [296].

A number of siRNA and small hairpin RNA (shRNA) have shown promising ther-

apeutic outcome in mouse xenograft tumor models, such as siVEGF (vascular en-

dothelial growth factor), siSTAT3 (signal transducer and activator of transcription

3), siCDK1 (cyclin-dependent kinase 1) for breast cancer treatment [122, 45, 47, 168,

161]; sic-Myc, siSHMT1 (serine hydroxymethyltransferase isoform 1), shAnxA2 (An-

nexin A2) for lung cancer treatment [330, 195, 5]; siYB-1 (Y-box binding protein-1),

siPLK-1 (serine/threonine-protein kinase), siNotch1 (Notch homolog 1, translocation-

associated), siREV1, siREV3L for prostate cancer cancer [324, 288, 248, 300]; siVEGF

for ovarian cancer treatment [56]; siRRM2 (ribonucleotide reductase M2), siEZH2

(Enhancer of zeste homolog 2)/siOct4 (octamer-binding transcription factor 4), and

a combination of shVEGF, shTERT (telomerase reverse transcriptase), shBcl-xl (B-
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cell lymphoma-extra large) for HNSCC treatment [88, 162, 216]. Among these siRNA

and shRNA therapies, VEGFA knockdown has been widely explored for the treat-

ment in different types of cancer. Indeed, VEGFA is one of the major regulators

of angiogenesis. Angiogenesis is a prerequisite for tumor development in the tumor

microenvironment, a crucial extracellular matrix for sustained tumor growth [20].

Cancer gene therapy is regarded as a promising approach but yet encounters

delivery challenges [20, 296]. Therefore, numerous methods have been developed

for gene delivery. Generally, there are two different categories of gene transfection

methods based on the nature of the carriers, which are viruses and nonviral gene

delivery carriers.[8] Viral vectors give high transfection efficiency and long-term gene

expression but raise serious safety concerns, including limited size of carried gene,

antigenicity, inflammation, insertion mutagenesis, and difficulty in a large scale. In

contrast, nonviral vectors possess many advantages, including low immunogenicity,

low toxicity, and potential targeting ability, which make nonviral vectors to serve as

an alternative gene delivery system [20, 153].

In Chapter 4, we have successfully fabricated and characterized folic acid (FA)

conjugated polyamidoamine dendrimer generation 4 (G4-FA) conjugates. G4-FA con-

jugates have shown to have the ability target folate receptor (FRα) and enhanced

transfection efficiency in HN12 cells. In this chapter, we hypothesize that G4-FA

conjugates can efficiently deliver siRNA into HN12 xenograft tumor. Near infrared

fluorescence dye (NIR) was conjugated onto G4-FA conjugates and G4 dendrimer to

monitor the biodistribution of the vehicles in the HN12 tumor-bearing mice. Both in-

tratumoral (i.t.) and intravenous (i.v.) administration routes were evaluated. siRNA

against VEGFA (siVEGFA) was chosen as a therapeutic siRNA and was complexed

with G4-FA conjugates to form G4-FA/siVEGFA polyplexes. The therapeutic effi-

cacy of G4-FA/siVEGFA polyplexes was studied and compared with siVEGFA alone,

G4-FA/siGFP (control siRNA), and G4/siVEGFA. The angiogenesis in the tumor

was analyzed as well.
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5.3 Materials and Methods

5.3.1 Materials

Diaminobutane (DAB) core dendrimer generation 4.0 (technical grade) was purchased

from NanoSynthons (Mt. Pleasant, MI). Dimethyl sulfoxide (DMSO), folic acid (FA),

formaldehyde solution (37 wt. % in H2O), and 1-ethyl-3-[3-dimethylaminopropyl] car-

bodiimide hydrochloride (EDC) were purchased from Sigma-Aldrich (St. Louis, MO).

Phosphate-buffered saline (PBS) and permount mounting medium were purchased

from Fisher Scientific (Pittsburgh, PA). Dulbeccos modified Eagle medium (DMEM),

trypsin-EDTA (0.25%), and penicillin-streptomycin (10,000 U/mL) were purchased

from Life Technologies (Carlsbad, CA). Ingenio electroporation solution was pur-

chased from Mirus Bio (Madison, WI). Vectastain ABC kit, 3,3’-Diaminobenzidine

(DAB), and hematoxylin were purchased from Vector Laboratories (Burlingame,

CA). Cosmic calf serum (CS) was purchased from Lonza (Walkersville, MD). β-actin

(ACTBD11B7) antibody was purchased from Santa Cruz Biotechnology (Santa Cruz,

CA). VEGFA (ab46154) and CD31 (ab28364) antibodies were purchased from Abcam

(Cambridge, MA). Goat anti-rabbit antibody conjugated to horseradish peroxidase

and goat anti-mouse antibody conjugated to horseradish peroxidase were purchased

from Bio-Rad (Hercules, CA). Polyvinylidene difluoride (PVDF) membrane was pur-

chased from Millipore (Billerica, MA). Western lightning Plus ECL was purchased

from Perkin-Elmer (Waltham, MA). SnakeSkin dialysis tubing with 7,000 molecular

weight cut-off (MWCO), human VEGF-A ELISA kit, ABsolute blue qPCR SYBR

green low ROX mix, and Richard-Allan ScientificTM signature series Clear-Rite 3

were purchased from Thermo Scientific (Rockford, IL). IRDye 800CW NHS Ester

was purchased from Li-COR Biotechnology (Lincoln, NE). BD Retrievagen Antigen

Retrieval Systems were purchased from BD Biosciences (San Jose, CA). siRNA and

primers were synthesized and purchased from Sigma-Aldrich (St. Louis, MO).
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5.3.2 Synthesis of PAMAM dendrimer conjugates

5.3.2.1 Synthesis of G4-FA

FA (18.6 mg, 42.2 µmol, MW = 441.4 g/mol) was allowed to react with EDC (113.3

mg, 590.9 µmol, MW = 191.71 g/mol) in a mixture of 12 mL of DMF and 4 mL

of DMSO for 1 h. The organic reaction mixture was added dropwise to 50 mL of

DI water solution containing 100 mg (7. 03 µmol) of PAMAM dendrimer G4 (MW

= 14215 g/mol). The reaction mixture was vigorously stirred for 2 days and then

dialyzed against DI water using dialysis tubing with MWCO of 7 kDa for 2 days.

After lyophilization (Flexi-DryTM MP corrosion resistant freeze-dryer), the resultant

G4-FA conjugates were obtained. The number of FA molecules coupled to each G4

dendrimer was quantified by using GENESYS 6 spectrophotometer (Thermo Scien-

tific, Rockford, IL). The resultant G4-FA conjugates were analyzed by reverse-phase

high performance liquid chromatography (RP-HPLC) and Proton nuclear magnetic

resonance (1H NMR) spectroscopy as described in Materials and Methods in Chapter

4.

5.3.2.2 Synthesis of NIR-G4-FA

IRDye 800CW NHS Ester (2 mg, 1.72 µmol, MW = 1162.2 g/mol) was dissolved in 1

mL of PBS. The dye solution was added dropwise to 9 mL of PBS containing 13.6 mg

(0.86 µmol) of G4- FA conjugates (MW = 15783 g/mol by UV-Vis spectrophotome-

ter). The reaction mixture was stirred in the dark for 1 day and then dialyzed against

DI water using dialysis tubing with MWCO of 7 kDa for 2 days. After lyophilization,

the resultant NIR-G4-FA conjugates were obtained.

5.3.2.3 Synthesis of NIR-G4

IRDye 800CW NHS Ester (2 mg, 1.72 µmol, MW = 1162.2 g/mol) was dissolved

in 1 mL of PBS. The dye solution was added dropwise to 9 mL of PBS containing

12.2 mg (0.86 µmol) of G4 dendrimer (MW = 14215 g/mol). The reaction mixture

was stirred in the dark for 1 day and then dialyzed against DI water using dialysis
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tube with MWCO of 7 kDa for 2 days. After lyophilization, the resultant NIR-G4

conjugates were obtained.

The number of NIR molecules coupled to each G4-FA conjugate and G4 den-

drimer was quantified by using GENESYS 6 spectrophotometer (Thermo Scientific,

Rockford, IL) and Odyssey CLx infrared imaging system (Li-COR Biotechnology,

Lincoln, NE).

5.3.3 Zeta potential measurements

PBS was filtered through a 20 nm filter. G4 dendrimer and its derivatives were

dissolved in the filtered PBS at the concentration of 0.5 mg/mL. Various amounts

of G4-FA conjugates (0 µg, 10 µg, 50 µg, and 200 µg) and G4 dendrimer (50 µg)

were diluted in 600 µL of filtered PBS; while 10 µg of siRNA against VEGFA was

diluted in 400 µL of filtered PBS. The solutions were vortexed for 10 s and then

equilibrated for 10 min at room temperature. The dendrimer solution was added to

the plasmid solution, homogenized for 10 s with a vortex, and equilibrated for 30 min

at room temperature. The size and zeta potential of G4 dendrimer, its derivatives

and polyplexes were measured at room temperature using a Malvern Zetasizer Nano

ZS90 apparatus (Malvern Instruments, Worcestershire, U.K.).

5.3.4 Cell culture

HN12 and HN12-YFP cells were cultured as described previously in Dulbeccos modi-

fied Eagles medium (DMEM) supplemented with 10% Cosmic calf serum, 100 units/mL

of penicillin, and 100 µg/mL of streptomycin at 37 ◦C in 95% air/5% CO2 [272].

5.3.5 Polyplex formation and transfection

The custom designed siRNA against VEGFA (siVEGFA) and GFP (siGFP) were

synthesized by Sigma-Aldrich (St. Louis, MO). The sequences of siRNAs were sum-

marized in Table 5.1. A series of G4-FA/siRNA or G4/siRNA polyplex solutions were

prepared accordingly. 2 µg, 10 µg, and 40 µg of G4-FA conjugates or 40 µg of G4
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Table 5.1: Sequences of siRNA duplexes
Name Forward sequence Reverse sequence Ref.
siVEGFA GGAGUACCCUGAUGA

GAUCdTdT
GAUCUCAUCAGGGUA
CUCCdTdT

[251]

siGFP GCACGACUUCUUCAA
GUCCdTdT

GGACUUGAAGAAGUC
GUGCdTdT

[119]

were diluted in 300 µL of DMEM; while 2 µg of siRNA (siVEGFA or siGFP) was

diluted in 200 µL of DMEM. All the solutions were mixed by vortexing for 10 s and

then equilibrated for 10 min at room temperature. The G4-FA conjugates solution

or G4 dendrimer solution was added to the plasmid solution, homogenized for 10 s

with a vortex, and equilibrated for 30 min at room temperature. Then 2.5 mL of the

complete medium containing 10% serum was added into the polyplex solution, and

the final volume brought to 3 mL [154, 159].

HN12 cells were seeded in the 6-well plates at a density of 20,000 cells/well and

allowed to attach overnight. Before addition of the transfection medium, the spent

medium was removed, and the cells were washed with PBS once. The cells were then

incubated with 3 mL of polyplex-containing medium at 37 ◦C for 48 h. At the end of

transfection, the spent medium was replaced with the complete medium containing

10% serum and maintained under normal growth conditions for another 48 h. The

cells treated with plain PBS in the same conditions were used as negative controls.

5.3.6 Electroporation

Electroporation was used to knockdown VEGFA mRNA expression with siVEGFA

function validation. Briefly, 1×106 HN12 cells were mixed with 1 µg of either siVEGFA

or siGFP in 100 µL of Ingenio electroporation solution. Electroporation was carried

out using Lonza-Amaxa nucleofector (Walkersville, MD) via a T-020 program. Cells

were then recovered in 5 ml of growth medium containing 10% serum and plated into

a 60-mm dish and treated for 48 h.
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Table 5.2: Primer sets for real-time PCR analysis
Name Forward sequence Reverse sequence Ref.
VEGFA AGGGCAGAATCATCA

CGAAGT
AGGGTCTCGATTGGA
TGGCA

[11]

ACTB CATGTACGTTGCTAT
CCAGGC

CTCCTTAATGTCACG
CACGAT

[95]

5.3.7 Real-time polymerase chain reaction (PCR) analysis

The relative mRNA levels were measured by real-time reverse-transcriptase PCR as

previously described [291, 292]. Briefly, at 2 d-post transfection, total RNA was

isolated from the cells using an ISOLATE II RNA Mini Kit (Bioline, London, UK)

that included DNase treatment. The total RNA concentration from each sample was

measured by a UV-Vis spectrophotometer (NanoDrop ND1000, Thermo Scientific,

Wilmington, DE). 2 µg of total RNA was used in the first-strand cDNA synthesis.

Real-time PCR was performed using SYBR green as a probe in an ABI 7500 Fast Real-

Time PCR System (Applied Biosystems, Foster City, CA). Amplification of β-actin

(ACTB) was used as internal controls. Relative mRNA expression was quantified

with the comparative cycle threshold (Ct) method and expressed as 2−∆∆Ct. The

sequences of the primers were summarized in Table 5.2.

5.3.8 Western blotting

Western blot analysis of total cellular protein was carried out following procedures

described previously [293, 294, 298]. Briefly, at 2 d-post transfection, total cell lysates

(30 µg) were separated on a 10% SDS-PAGE gel and transferred onto a polyvinylidene

difluoride (PVDF) membrane. The membrane was blocked in Tris-buffered saline

(TBS) containing 5% non-fat dry milk for 2 h at room temperature and then incubated

in a 1:1000 dilution of primary antibody in blocking buffer overnight at 4 ◦C with

shaking. The membrane was washed with TBS containing 0.5% Tween 20 (TBST) for

three times and then incubated in a 1:3000 dilution of appropriate secondary antibody

in TBST at room temperature for 2 h. The specific antigen-antibody interactions were
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detected using enhanced chemiluminescence. The expression of ACTB was used as a

loading control.

5.3.9 Enzyme-linked immunosorbent assay (ELISA) analysis

The levels of VEGFA protein secreted by HN12 cells in the media were determined by

a VEGFA ELISA kit [99]. Briefly, at 2 d-post transfection, the spent media were col-

lected, and VEGFA protein concentrations were measured by ELISA according to the

manufacturers instructions. An anti-human VEGFA antibody was pre-coated to the

96-well microplate. The spent media/standards (50µL) were added to the antibody-

coated wells and incubated for 2h. Unbound antigen was washed, followed by the

addition of biotinylated secondary detecting antibody and subsequent incubation for

1h. Excess detecting antibody was washed, and streptavidin-HRP was added. It

reacts with TMB (3,3’,5,5’-tetramethylbenzidine) substrate to produce a colorimetric

signal. This signal was detected by measuring the absorbance at 450nm using an

Epoch plate spectrophotometer (BioTek, Winooski, VT). The number of the cells in

each well was measured by Nexcelom Bioscience Cellometer Auto T4 (Nexcelom Bio-

science, Lawrence, MA). Then, the VEGFA protein concentrations were normalized

to the number of cells per well.

5.3.10 Animal studies

Animal studies were approved by the Institutional Animal Care and Use Committee

(IACUC) of Virginia Commonwealth University, and were conducted in accordance

with the Declaration of Helsinki, the Guide for the Care and Use of Laboratory

Animals, and all applicable regulations.

5.3.10.1 Establishment of the xenograft tumor model of head and neck

cancer

HN12 cells or HN12-YFP cells (5×106) were injected subcutaneously (s.c.) into 4-

week-old female athymic nude mice (Harlan Sprague Dawley, Indianapolis, IN) [80,
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Table 5.3: Mice assignment for in vivo biodistribution assessment
Group Route Nanoparticles Dosage/tumor/mouse Dose n
1 i.t. NIR dye 12 µg 1 5
2 i.t. NIR-G4 175 µg 1 5
3 i.t. NIR-G4-FA 175 µg 1 5
4 i.v. NIR dye 12 µg 1 2
5 i.v. NIR-G4-FA 175 µg 1 2
6 i.v. NIR-G4-FA/pMAX-GFP 175 µg 1 2

Abbreviations: i.t., intratumoral; i.v., intravenous.

82]. When the tumors had developed to a volume of 80 mm3 on average, the mice

were divided into 14 groups (Tables 5.3, 5.5) in a way to minimize body weight and

tumor size differences among the groups.

For the in vivo biodistribution assessment, the images were taken at 1 h, 1 d,

3d, 7 d, 14 d, and 21 d after i.t. administration, and 1 h, 6 h, 1 d, 2 d, 4 d, 7 d,

and 14 d after i.v. administration, using Pearl Trilogy small animal imaging system

(Li-COR Biotechnology, Lincoln, NE) at 800 nm channel. The mice were sacrificed

by euthanasia using CO2 inhalation at 21 d-post i.t. administration and 14 d-post i.v.

administration, respectively. Organs including heart, kidney, spleen, lung, liver, brain,

and tumor were collected and imaged using Pearl Trilogy small animal imaging system

at 800 nm channel. The signal from each individual image was analyzed using Odyssey

CLx infrared imaging system software (Li-COR Biotechnology, Lincoln, NE). Dye

accumulation and retention in live animals and organs were evaluated by calculating

the contrast index values [322].

For the in vivo anti-tumor assessment, the body weights were monitored,

and the tumor size were measured by standard digital caliper (Tresna, Guangxi

Province, China) every other day. The tumor volume was calculated using the for-

mula Volumetumor = (Length × Width2)/2, with the Width being smaller than the

Length [80, 82, 81]. In the HN12-YFP tumor-bearing mice, the mice were imaged us-

ing IVIS 200 system to indicate the tumor size at 8 d-post injections. All tested mice

were sacrificed by euthanasia using CO2 inhalation at 24 d-post first i.t. injection.
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Table 5.4: Mice assignment for in vivo anti-tumor assessment
Group Route Polyplexes Dosage/tumor/mouse Dose n
7 i.t. PBS n/a 1 3
8 i.t. G4-FA/siGFP 175 µg/35 µg 1 2
9 i.t. G4-FA/siVEGFA 175 µg/35 µg 1 3
10 i.t. PBS n/a 2 6
11 i.t. siVEGFA 175 µg/35 µg 2 6
12 i.t. G4-FA/siGFP 175 µg/35 µg 2 6
13 i.t. G4/siVEGFA 175 µg/35 µg 2 6
14 i.t. G4-FA/siVEGFA 175 µg/35 µg 2 6

Abbreviations: n/a, not applicable; i.t., intratumoral.

The tumor was removed, imaged, and weighed. Then, equal portions of tumors were

snap frozen and stored at -80 ◦C for further analysis, or fixed in 10% neutral-buffered

formalin for histologic and immunohistochemical evaluation.

5.3.10.2 Hematoxylin and eosin staining (H&E staining)

The formalin-fixed tumor specimens were embedded in paraffin and sectioned at 5

µm. The H&E staining was performed at the VCU Massey Cancer Biological Macro-

molecule Core Facility. The tissues slides were imaged under a Nikon ECLIPSE E400

clinical microscope (Nikon Instruments Inc., Melville, NY) using a magnification of

100× and 200×.

5.3.10.3 Immunohistochemistry

The immunohistochemical staining was carried out following procedures described

previously [328, 329]. Briefly, the formalin-fixed tumor specimens were embedded in

paraffin, and sectioned at 5 µm, deparaffinized in Clear-Rite 3, and rehydrated in

graded alcohols (100%, 95%, 90%, 80%, and 70%). For antigen retrieval, the sections

were microwaved in antigen retrieval systems (BD retrievagen) for 10 min. Endoge-

nous peroxidase activity was quenched by incubation in 3% (v/v) H2O2 for 15 min.

The sections were incubated with the primary polyclonal antibody against CD31 for 1

h. After the sections were washed with TBS, the immobilized antibodies were detected
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by avidin-biotin-peroxidase technique (Vectastain ABC kit). 3,3’-Diaminobenzidine

and hematoxylin were used as the chromogen and the nuclear counterstain, respec-

tively. The primary antibody was omitted as negative control. The tissues slides were

then imaged under a Nikon ECLIPSE E400 clinical microscope using a magnification

of 200×. The average microvessels counts (per 200× field) were quantitated as the

number of CD31-positive vessels in six randomly selected fields for each sample, and

each group included sections from 2 mice.

5.3.11 Statistical analysis

The data were expressed as means ± standard deviation (SD) or standard error of

the mean (SEM). The statistical analysis was performed by Students t-test for com-

parison using GraphPad Prism 5 (La Jolla, CA). A value of p < 0.05 was considered

statistically significant.

5.4 Results and Discussion

5.4.1 Synthesis and characterization of NIR-labeled G4-FA

conjugates and G4 dendrimer

The preparation and characterizations of G4-FA conjugates were described in Chap-

ter 4. For in vivo trafficking of G4-FA conjugates, near-infrared fluorescence dye

(NIR) was conjugated onto G4 dendrimer and G4-FA conjugates. The strategy used

to synthesize NIR-G4-FA conjugates is illustrated in Scheme 5.1. The UV-Visible

absorption spectrum showed the characteristic maximum absorption wavelength of

free NIR was at 780 nm (Figure 5.2a). Because the UV detection limitation of high

performance liquid chromatography (HPLC) is from 190 to 700 nm, the purity of G4-

FA conjugates could not be analyzed using HPLC. A fluorescence detector equipped

HPLC may help to determine the purity of NIR-G4-FA and NIR-G4 conjugates in

the future. UV-Visible (UV-Vis) spectroscopy was first employed to determine the

coupling efficiency of NIR to G4-FA conjugates and G4 dendrimer. A standard curve
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of NIR at absorption wavelength of 780 nm was generated by plotting the mean

absorbance (y-axis) for each NIR concentration (x-axis) (Figure 5.2b). UV-Visible

spectroscopy analysis showed that an average of 0.0082 and 0.0044 NIR molecules was

conjugated onto each G4-FA conjugate and G4 dendrimer, respectively. These results

were questionable because the color of resultant NIR-G4-FA and NIR-G4 conjugates

were changed from yellow and transparent to dark blue, respectively. Therefore, the

coupling efficiency of NIR to G4-FA conjugates and G4 dendrimer were determined

by the Odyssey CLx infrared imaging system. A standard curve of NIR at 800 nm

channel was generated by plotting the average signal counts (y-axis) for each NIR

concentration (x-axis) (Figure 5.2c). Again, the result showed that an average of

0.0059 molecules was conjugated onto each G4-FA conjugate. Both results raised

a question whether NIR coupling efficiency was extremely low in both conjugates.

In order to find the truth, we measure the absorbance spectra of NIR-G4-FA and

NIR-G4 conjugates. Surprisingly, we found the characteristic maximum absorption

wavelength of NIR shifted from 780 nm to 620 nm, which left an absorbance tail at

780nm. These results explained why such low coupling efficiency was measured by

the UV-Vis spectroscopy and the Odyssey CLx infrared imaging system. However,

the reason to cause the absorbance shift remains unknown. One possible explanation

could be that NIR dye was shielded from G4-FA conjugates and G4 dendrimer, which

subsequently quenched its fluorescence. This interpretation needs to be validated by

additional precise experiments in the future.

5.4.2 Characterization of NIR-G4, NIR-G4-FA conjugates,

and polyplexes

G4-FA/siVEGFA, G4-FA/siGFP, and G4/siVEGFA polyplexes at different weight

ratios were summarized in Table 5.2. By knowing the molecular weight and the

number of primary amines of G4 dendrimer and G4-FA conjugate as well as the

number of bases and phosphates of siVEGFA and siGFP, the molar ratios and the
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Figure 5.1: Synthetic scheme of NIR-G4-FA conjugate.
Synthesis of dendrimer-folic acid (G4-FA) conjugates (a). Labeling G4-FA conjugates
with NIR (b).
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Figure 5.2: Characterization of NIR conjugated G4-FA conjugates and G4
dendrimer.
The absorption spectra of near-infrared fluorescence dye (NIR), NIR-G4-FA and
NIR-G4 conjugates were determined by ultraviolet-visible (UV-Vis) spectroscopy (a).
Standard curves of NIR were determined by UV-Vis spectroscopy (b) and Odyssey
CLx infrared imaging system at 800 channel (c).
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Table 5.5: Weight, molar, and nitrogen/phosphate (N/P) ratios of G4-FA
conjugate and G4 dendrimer to siRNA

Polyplex Weight ratio Molar ratio N/P ratio
G4-FA/siVEGFA 1 0.8 1.3

5 4.2 6.4
20 16.9 25.7

G4-FA/siGFP 5 4.2 6.4
G4/siVEGFA 5 4.7 7.1

nitrogen/phosphate (N/P) ratios of polyplexes were also calculated in Table 5.5.

The zeta potential of NIR-G4, NIR-G4-FA conjugates, and polyplexes was

measured by DLS. First, no significant difference of zeta potential was observed be-

tween NIR-G4 and NIR-G4-FA conjugates (Figure 5.3a). Next, siRNA is double-

stranded RNA molecule that possesses 21 base pairs in length (siVEGFA and siGFP).

Each base pair contains a phosphate group, which results an overall negative charge

of siRNA. As expected, siVEGFA possessed a negative zeta potential of -13.8 mV

(Figure 5.3b). At a weight ratio of 1, G4-FA/siVEGFA polyplexes displayed a neg-

ative zeta potential of -14.8 mV, which was not significantly different from that of

siVEGFA. At weight ratios of 5 and 20, the zeta potential of G4-FA/pGFP poly-

plexes significantly increased from -13.8 mV to 9.3 mV and 15.9, respectively. These

results suggest that G4-FA/siVEGFA polyplexes can be formed at a weight ratio of

1 or above; however, at a weight ratio of 1 (molar ratio of 0.8), the number of G4-FA

conjugate molecules was less than that of siVEGFA molecules. Thus, G4-FA conju-

gates may be not enough to cover the siVEGFA, which results an overall negative

surface charge of -14.8 mV. At weight ratio of 5 and 20 (molar ratio of 4.2 and 16.9),

the siVEGFA plasmid can be sufficiently shielded by G4-FA conjugates in complex-

ation, which spiked the surface charge of polyplexes to positive. Moreover, the zeta

potential of G4-FA/siVEGFA polyplexes was significantly lower than that of G4-FA

conjugates, which indicates siVEGFA interacted with G4-FA conjugates by forming

polyplexes. In contrast, the zeta potential of G4/siVEGFA polyplexes at a weight

ratio of 5 was determined as 18.8 mV, which is higher than that of G4-FA/siVEGFA

polyplexes at the same weight ratio. The increased zeta potential of G4/siVEGFA
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Figure 5.3: Zeta potentials of NIR-G4-FA and NIR-G4 conjugates (a),
siVEGFA, G4-FA/siVEGFA, and G4/siVEGFA polyplexes, G4 dendrimer
and G4-FA conjugates (b) were determined by dynamic light scattering
(DLS).
The bars and error bars are means ± SEM. n = 3-6. *** p < 0.001 versus siVEGFA;
# p < 0.05, ## p < 0.01, and ### p < 0.001 versus G4-FA conjugates.

polyplexes may lead a higher non-specific uptake than G4-FA/siVEGFA polyplexes,

because the efficient adsorptive uptake of polyplexes by cells would be enabled by

the net positive charge of polyplexes via electrostatic interaction [106]. On the other

hand, because both NIR-G4 and NIR-G4-FA conjugates have high light absorption,

the size of both conjugates was not able to be detected by DLS analysis.

5.4.3 Validation of siVEGFA

The sequences of siVEGFA duplex have been evaluated in several studies [251, 314,

31, 252], but these sequences of siVEGFA duplex have not been tested in HN12 cells.

Thus, we tested the siVEGFA in HN12 cells using electroporation method. Elec-

troporation transfection gives a stable transfection efficiency but a low cell viability,

which is 40% to 70% cell viability under an optimal transfection condition [210]. Our

results showed that siVEGFA significantly knocked down both mRNA (Figure 5.4a)

and protein (Figure 5.4b) expression VEGFA in HN12 cells by 46% and 57%, re-
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Figure 5.4: siVEGFA validation.
HN12 cells were transfected with siVEGFA and siGFP via electroporation, followed
by 48 h culture. The relative mRNA expression of VEGFA was determined by real-
time PCR analysis (a), and the relative intracellular protein expression of VEGFA
was determined by Western blot analysis. The expression level of β-actin (ACTB)
was used as a loading control. The bars and error bars are means ± SD. n =3. ** p
< 0.01 and *** p < 0.001.

spectively. These results validated that siVEGFA duplex were able to knockdown

VEGFA expression. Our results agree well with the previous reported findings. One

report showed a 66% knockdown level of mRNA expression in prostate cancer PC3

cells [252], and a similar knockdown level of protein expression in colorectal cancer

HCT116 cells was achieved [314], using Lipofectamine by the same set of siVEGFA

duplexes. However, by giving a high transfection capability using electroporation,

the gene silencing efficiency of VEGFA using this sequence was not very impressive,

indicating silencing potency of a single set of siVEGFA duplex may be moderate in

HN12 cells.
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5.4.4 Transfection efficiency of poleplexes

By understanding the transfection mechanism and efficiency of G4-FA/plasmid poly-

plexes (Chapter 4), we tested the VEGFA knockdown efficiency of G4-FA/siVEGFA

polyplexes. As we expected, G4-FA/siVEGFA polyplexes at weight ratios of 1, 5,

and 20 significantly decreased the mRNA expression level of VEGFA by 8%, 28%,

and 12%; while G4/siVEGFA polyplexes at a weight ratio of 5 significantly decreased

the mRNA expression level of VEGFA by 18% (Figure 5.5). Among the presented

transfection conditions, G4-FA/siVEGFA polyplexes at a weight ratio of 5 showed

the highest VEGFA knockdown efficiency in HN12 cells. The knockdown efficiency

of G4-FA/siVEGFA polyplexes was 1.6 times that of non-targeting G4/siVEGFA

polyplexes at the same weight ratio. To confirm mRNA expression results, we quan-

tified the sequential release of VEGFA after transfection of polyplexes in HN12 cells.

The ELISA analysis showed that G4-FA/siVEGFA and G4/siVEGFA polyplexes at

a weight ratio of 5 significantly decreased the release of VEGFA by 32% and 17%,

respectively (Figure 5.6). G4-FA/siVEGFA polyplexes resulted in a decrease of 15%

in the overall amount of VEGFA released in HN12 cells as compared to non-targeting

G4/siVEGFA polyplexes at the same weight ratio. Although both G4-FA/siVEGFA

and G4/siVEGFA polyplexes at a weight ratio of 5 showed significant knockdown

of VEGFA mRNA expression and protein secretion, the knockdown efficiency was

not very impressive. To our best knowledge, it could be due to the following two

reasons. First, the silencing potency of single set of siVEGFA duplex was not very

impressive in HN12 cells (Figure 5.4). Second, it has been reported that the pres-

ence of serum could significantly reduce the gene knockdown efficiency of both tri-

ethanolamine (TEA)-core PAMAM dendrimer G4 and arginine-terminated PAMAM

dendrimer G4 (G4-Arg) siRNA polyplexes, especially G4/siRNA polyplexes [154]. In

this work, the transfection was carried out in the presence serum, which raised the pos-

sibility that the serum proteins may interact with G4/siVEGFA or G4-FA/siVEGFA

polyplexes and subsequently destabilize the polyplexes [154]. Therefore, to improve

the knockdown efficiency of G4-FA/siVEGFA polyplexes, we could complex G4-FA
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Figure 5.5: The effect of polyplexes on mRNA expression of VEGFA.
HN12 cells were transfected with G4-FA/siVEGFA polyplexes at weight ratios of 1,
5, and 20, and G4/siVEGFA polyplexes at a weight ratio of 5 for 48 h, followed by
48 h culture. The relative mRNA expression of VEGFA was determined by real-time
PCR analysis. The expression level of β-actin (ACTB) was used as a loading control.
The bars and error bars are means ± SD. n = 3. * p < 0.05, *** p < 0.001 versus
PBS; ### p < 0.001 versus G4/siVEGFA at a weight ratio of 5.

conjugates with a pool of siVEGFA duplex sets to increase the potency of siVEGFA

itself and transfect cells with G4-FA/siVEGFA polyplexes in the absence of serum to

limit serum interaction. However, these were not the purpose of this work. In this

work, we aimed to investigate whether G4-FA conjugates could delivery siRNA into

the tumor in vivo in a xenograft tumor model.

5.4.5 In vivo accumulation of G4-FA conjugates in a xenograft

tumor model of head and neck cancer

One of the key advantages of using targeted NPs for anticancer drug delivery in vivo is

that NPs facilitate drug accumulation within tumors. To investigate biodistribution

and antitumor efficacy, we first established the xenograft tumor model by s.c. injection
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Figure 5.6: The effect of polyplexes on the release of VEGFA.
HN12 cells were transfected with G4-FA/siVEGFA and G4/siVEGFA polyplexes at
a weight ratio of 5 for 48 h, followed by 48 h culture. The concentration of VEGFA
in the medium was determined by ELISA, and normalized by the cell number. The
bars and error bars are means ± SEM. n = 3.

of HN12 cells in the nude mice, yielding HN12 tumor-bearing mice. By monitoring

the tumor volume, we determined HN12 tumor growth rate in the xenograft tumor

model (Figure 5.7). The tumor growth rate showed that the tumor started to grow

exponentially at 2 weeks-post s.c. injection of HN12 cells, indicating an effectively

therapeutic window for siVEGFA gene therapy may be within 2 weeks.

5.4.5.1 Intratumoral (i.t.) administration

Near infrared fluorescence dye (NIR) shows great potential in tumor imaging, pho-

tothermal, and photodynamic therapies because of high tissue penetration depth and

low tissue autofluorescence interference in the NIR spectrum window, which improve

specificity to distinguish tumor from the normal tissues [318]. To investigate real-time

biodistribution of G4-FA conjugates, we prepared NIR-labeled G4-FA (NIR-G4-FA)

conjugates and NIR-labeled G4 dendrimer (NIR-G4) conjugates for comparison. Fol-

lowing local injection into tumor, the fluorescence signal was immediately detected
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Figure 5.7: Establishment of the xenograft tumor model of head and neck
cancer.
The tumor volume was measured at the predetermined time points after subcutaneous
(s.c.) injection of HN12 cells in the nude mice. The dots and error bars are means ±
SEM. n = 8-10.

in the tumors within 1 h (Figure 5.8, 5.9, 5.10). However, the fluorescence signal was

significantly decreased at 1 d-post i.t. injection of free NIR, and was unable to be

detected at and after 3 d-post i.t. injection (Figure 5.8). The ventral view of the

mice at 1 h-post i.t. injection of free NIR showed a significant fluorescence signal

in the bladder in addition to the whole body (Figure 5.11), indicating free NIR was

rapidly eliminated from the body through renal clearance, and it possessed very low

retention time in the tumor. In contrast, the fluorescence signal retained in the tu-

mor region up to 21 d-post i.t. injection of both NIR-G4 and NIR-G4-FA conjugates

(Figure 5.9, 5.10). The ventral view of the mice at 1-h post i.t. injection of NIR-G4

and NIR-G4-FA conjugates showed the fluorescence signal was highly localized in the

tumor region and no fluorescence signal was detected from the other regions (Figure

5.11). These observations indicated both G4 dendrimers and G4-FA conjugates could

retain in the tumor and its surrounding region for up to 21 days. At notice, the fluo-

rescence signals spread from the tumor in both NIR-G4 and NIR-G4-FA conjugates

injected mice. Therefore, we employed the Odyssey CLx infrared imaging system
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to measure the fluorescence signal counts within the tumor region. Based on the

real-time live imaging, no significant difference of the fluorescence signal counts could

be found between the mice i.t. injected with NIR-G4 and those with NIR-G4-FA

conjugates (Figure 5.12a). In addition, no significant difference of the body could be

found in the mice i.t. injected with NIR, NIR-G4 and NIR-G4-FA conjugates (Figure

5.12b), which might indicate NIR-labeled G4 dendrimer and G4-FA conjugates were

biocompatible at one-dose i.t. injection.

At 21 d-post i.t. injection, the heart, kidney, spleen, lung, liver, brain, and

tumor tissues were collected. The fluorescence signal of each tissue was determined

by Pearl Trilogy small animal imaging system. As expected, no fluorescence signal

could be detected in the tissues from the mice i.t. injected with free NIR (Figure

5.13), consistent with the real-time biodistribution assessment (Figure 5.8). In con-

trast, a significant fluorescence signal was observed in the tumor tissue from the mice

i.t. injected with NIR-G4 and NIR-G4-FA conjugates (Figure 5.13). The fluorescence

intensity of each tissue was analyzed by CLx infrared imaging system software. In

both NIR-G4 and NIR-G4-FA conjugates i.t. injected mice, the greatest fluorescence

signal was observed in the tumor compared with the other tissues (Figure 5.14). The

fluorescence intensities of kidney, spleen, liver, and tumor from the mice i.t. injected

with NIR-G4-FA conjugates increased by 1.7, 1.8, 2.0, and 2.6 folds, compared to

those from the mice i.t. injected with NIR-G4 conjugates. Collectively, these results

indicate that both G4 dendrimers and G4-FA conjugates could facilitate in vivo tu-

mor accumulation of NIR after i.t. administration. Moreover, FA-decoration onto

G4 dendrimer could enhance tumor accumulation of NIR after i.t. administration.

As we described in Chapter 4, the cellular uptake mechanism of G4 dendrimer was

nonspecific absorptive endocytosis, whereas the cellular uptake mechanism of G4-FA

conjugates was folate receptor (FR)-mediated endocytosis. The xenograft tumor was

generated from HN12 cells, which highly express FRα. Besides, kidney, spleen, and
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Figure 5.8: Lateral view of the mice at indicated time points after intra-
tumoral (i.t.) injection of free near infrared fluorescence dye (NIR).
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Figure 5.9: Lateral view of the mice at indicated time points after in-
tratumoral (i.t.) injection of near infrared fluorescence dye-labeled G4
dendrimer (NIR-G4) conjugates.
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Figure 5.10: Lateral view of the mice at indicated time points after intra-
tumoral (i.t.) injection of near infrared fluorescence dye-labeled G4-FA
(NIR-G4-FA) conjugates.
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Figure 5.11: Ventral view of the mice at 1 h-post intratumoral (i.t.) injec-
tion of near infrared fluorescence dye (NIR), NIR-labeled G4 dendrimer
(NIR-G4), and NIR-labeled G4-FA (NIR-G4-FA) conjugates.
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Figure 5.12: The real-time fluorescence intensity in the tumor region of
the mice at indicated time points after intratumoral (i.t.) injection of
near infrared fluorescence dye (NIR), NIR-labeled G4 dendrimer (NIR-
G4), and NIR-labeled G4-FA (NIR-G4-FA) conjugates (a). The body
weights were monitored at indicated time points after subcutaneous (s.c.)
injection of HN12 cells (b). The dots and error bars are means SEM. n
= 5.

liver have high FR expression because of folate resorption, presence of macrophages

and Kupffer cells, respectively [29, 255]. Therefore, after local i.t. administration,

G4-FA conjugates were preferentially taken up by tumor, and circulated G4-FA con-

jugates could be taken up by kidney, spleen, and liver.

From the literature search, we found both FA-modified trypsin-stabilized gold

nanoclusters with NIR fluorescence (FA-try-AuNCs) and FA-modified dendrimer-

entrapped gold nanoparticles (Au DENPs-FA) were synthesized for in vivo tumor

bioimaging. NIR fluorescence signal could be detected immediately after i.t. injec-

tion of FA-try-AuNCs, and the signal in the tumor can remain up to 12 h in the

HeLa tumor-bearing mice [155]. Au DENPs-FA could be detected in the tumor at

6 h-post i.t. injection in the KB tumor-bearing mice [271]. Both FA-try-AuNCs

and Au DENPs-FA have shown great potentials for tumor imaging with good clear-

ance, which helps to avoid potential toxicity from the imaging contrast agents and

vehicle itself. However, by comparing with FA-try-AuNCs and Au DENPs-FA, our

NIR-G4-FA conjugates offered significantly longer tumor retention time, which was
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Figure 5.13: Qualitative biodistribution presentation of the tissues from
the mice at 21 d-post i.t. injection of near infrared fluorescence dye (NIR),
NIR-labeled G4 dendrimer (NIR-G4), and NIR-labeled G4-FA (NIR-G4-
FA) conjugates.

141



Figure 5.14: Quantitative biodistribution analysis of the tissues from the
mice at 21 d-post i.t. injection of near infrared fluorescence dye (NIR),
NIR-labeled G4 dendrimer (NIR-G4), and NIR-labeled G4-FA (NIR-G4-
FA) conjugates. The bars and error bars are means SEM. n = 5.

at least 21 d. This prolonged tumor retention time would significantly contribute to

the enhanced the gene and drug delivery efficacy of the vehicle.

5.4.5.2 Intravenous (i.v.) administration

The promising data generated from i.t. administration lead us to challenge i.v. admin-

istration in the xenograft tumor model. In this experiment, because NIR-G4-FA con-

jugates remained highly positively charged (Figure 5.3a), we complexed NIR-G4-FA

conjugates with pMAX-GFP plasmid to neutralize the zeta potential of NIR-G4-FA

conjugates. Following systemic injection of free NIR through the tail vein, the fluo-

rescence signal was immediately detected in the whole body within 1 h (Figure 5.15).

Then, the fluorescence signal was significantly decreased at 6 h-post i.v. injection of

free NIR, and was unable to be detected at and after 1 d-post i.t. injection. The

ventral view of the mice at 1 h-post i.v. injection of free NIR again showed a signifi-

cant fluorescence signal in the bladder in addition to a the whole body (Figure 5.16),

indicating free NIR was rapidly eliminated from the body through renal clearance and

possessed very low retention time in the tumor. These results were consistent with

those of i.t. administration (Figure 5.11). In contrast, the fluorescence signal retained
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in the abdominal region at 1 h-post i.t. injection of both NIR-G4-FA conjugates and

NIR-G4-FA/pGFP polyplexes (Figure 5.16), indicating the initial hepatic absorption

of both conjugates and polyplexes was high after i.v. administration. The dorsal view

of the mice at 1-h post i.v. injection of NIR-G4-FA conjugates and NIR-G4-FA/pGFP

polyplexes showed the fluorescence signal was highly localized in the kidneys and no

significant fluorescence signal was detected in the tumor region (Figure 5.17, 5.18),

indicating the initial renal absorption of both conjugates and polyplexes was also high

after i.v. administration. Based on the real-time biodistribution imaging from both

ventral and dorsal views, the NIR could retain in liver and kidney for up to 14 d, but

the fluorescence intensities in both liver and kidney were gradually decreased during

these 14 d, indicating either NIR fluorescence was quenched over the time, or G4

dendrimers and G4-FA conjugates were slowly eliminated from the body. The lateral

view of the mice after i.v. injection of NIR-G4-FA conjugates and NIR-G4-FA/pGFP

polyplexes showed no significant increase of the fluorescence signal was detected in

the tumor region compared to the rest of the body (Figure 5.19, 5.20). Then, we em-

ployed the Odyssey CLx infrared imaging system to measure the fluorescence signal

counts within the tumor region. Based on the real-time live imaging, no significant

increase of the fluorescence signal counts could be found in the mice i.v. injected

with NIR-G4-FA conjugates and NIR-G4-FA/pGFP polyplexes (Figure 5.21a). In

addition, no significant difference of the body weight could be found in the mice i.v.

injected with NIR, NIR-G4-FA conjugates, and NIR-G4-FA/pGFP polyplexes (Fig-

ure 5.21b), indicating G4-FA conjugates and their polyplexes were biocompatible at

one-dose i.v. injection, consistent with that of i.t. administration (Figure 5.12b).

At 14 d-post i.v. injection, the heart, kidney, spleen, lung, liver, brain, and

tumor tissues were collected. The fluorescence signal of each tissue was determined by

Pearl Trilogy small animal imaging system. As expected, no fluorescence signal could
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Figure 5.15: Lateral view of the mice at indicated time points after intra-
venous (i.v.) injection of free near infrared fluorescence dye (NIR).
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Figure 5.16: Ventral view of the mice at 1 h-post intravenous (i.v.) injec-
tion of near infrared fluorescence dye (NIR), NIR-labeled G4-FA (NIR-G4-
FA) conjugates, and NIR-G4-FA/pGFP polyplexes. pGFP, pMAX-GFP
plasmid.
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Figure 5.17: Dorsal view of the mice at indicated time points after in-
travenous (i.v.) injection of near infrared fluorescence dye-labeled G4-FA
(NIR-G4-FA) conjugates.
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Figure 5.18: Dorsal view of the mice at indicated time points after intra-
venous (i.v.) injection of NIR-G4-FA/pGFP polyplexes. pGFP, pMAX-
GFP plasmid.
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Figure 5.19: Lateral view of the mice at indicated time points after in-
travenous (i.v.) injection of near infrared fluorescence dye-labeled G4-FA
(NIR-G4-FA) conjugates.
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Figure 5.20: Lateral view of the mice at indicated time points after intra-
venous (i.v.) injection of NIR-G4-FA/pGFP polyplexes. pGFP, pMAX-
GFP plasmid.
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Figure 5.21: The real-time fluorescence intensity in the tumor region of
the mice at indicated time points after intravenous (i.v.) injection of
near infrared fluorescence dye (NIR), NIR-labeled G4-FA (NIR-G4-FA)
conjugates, and NIR-G4-FA/pGFP polyplexes (a). The body weights were
monitored at indicated time points after subcutaneous (s.c.) injection of
HN12 cells (b). pGFP, pMAX-GFP plasmid. The dots and error bars are
means SEM. n = 2.

be detected in the tissues from the mice i.v. injected with free NIR (Figure 5.22), con-

sistent with the real-time biodistribution after i.t. administration (Figure 5.15). In

contrast, a significant fluorescence signal was observed in the kidney, liver, and spleen

tissues from the mice i.v. injected with NIR-G4-FA conjugates NIR-G4-FA/pGFP

polyplexes (Figure 5.22). The fluorescence intensity of each tissue was analyzed by

CLx infrared imaging system software. In both NIR-G4-FA conjugates and NIR-G4-

FA/pGFP polyplexes i.v. injected mice, the greatest fluorescence signal was observed

in the kidney, spleen, liver, but not tumor (Figure 5.23). Collectively, these results

indicate that both G4-FA conjugates and G4-FA/plasmid polyplexes were not able to

facilitate in vivo tumor accumulation of NIR after systemic administration. G4-FA

conjugates and their polyplexes were rapidly taken up by kidney, spleen, and liver

because their high FR expression [29, 255]. Therefore, systemic administration was

not a suitable route for G4-FA conjugate administration. To our best knowledge,

NIR-G4-FA conjugates and their polyplexes possess very short circulation half-life

mainly because the submicron size, positive charge, and FA-targeting moiety of these

nanoparticles can trigger rapid hepatic and renal clearance. It is well documented
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that covalent or non-covalent surface modification of nanoparticles with polyethylene

glycol (PEG) can significantly prolong the circulation time and increase the half-life of

nanoparticles [199, 289, 332, 267]. Besides, PEG is non-toxic and non-immunogenetic

and approved by Food and Drug Administration (FDA) for internal use in humans

[267]. Therefore, PEGylation of G4-FA conjugates may serve as a better delivery

carrier for siRNA via systemic administration. However, PEGylated PAMAM den-

drimer causes the loss of primary amine on the PAMAM dendrimer and often results

a decrease in their buffering capacity, which is essential for gene transfection [193].

Therefore, application of bis-aryl hydrazone (BAH) linkage onto PEGylated PAMAM

dendrimer may compensate the loss of primary amine and help maintain or increase

their buffering capacity [321]. On the other hand, the molecular weight of PEG and

the degree of PEGylation remain to be justified by further evaluations in the future.

5.4.6 In vivo antitumor efficacy of G4-FA/siVEGFA poly-

plexes in the xenograft tumor model

The biodistribution assessment could be used to predict therapeutic outcome of G4-

FA/siVEGFA polyplexes. VEGFs play central roles in regulation of angiogenesis.

VEGFA, as the major factor for angiogenesis, binds to two tyrosine kinase receptors

(VEGFR-1 and VEGFR-2), and subsequently regulates endothelial cell proliferation,

migration, vascular permeability, secretion, and other endothelial functions [237].

VEGF-VEGFR is crucial not only for physiological angiogenesis from early embry-

onic to adult stages but also for pathological angiogenesis, such as in age-related

macular degeneration and in cancer [237]. To data, a number of strategies have been

developed to target VEGF-VEGFR system for anti-angiogenic therapy alone or in

combination with other therapies in cancer treatment [119, 252, 120, 256]. In this

work, we evaluated the antitumor efficacy of G4-FA/siVEGFA polyplexes via i.t.

administration in HN12 tumor-bearing nude mice.
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Figure 5.22: Qualitative biodistribution presentation of the tissues from
the mice at 14 d post i.v. injection of near infrared fluorescence dye (NIR),
NIR-labeled G4-FA (NIR-G4-FA) conjugates, and NIR-G4-FA/pGFP
polyplexes. pGFP, pMAX-GFP plasmid.
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Figure 5.23: Quantitative biodistribution analysis of the tissues from the
mice at 21 d post intratumoral (i.t.) injection of near infrared fluorescence
dye (NIR), NIR-labeled G4-FA (NIR-G4-FA) conjugates, and NIR-G4-
FA/pGFP polyplexes. pGFP, pMAX-GFP plasmid. The bars and error
bars are means SEM. n = 2.

5.4.6.1 Single-dose administration

A single-dose of G4-FA/siVEGFA polyplexes, G4-FA/siGFP polyplexes control, and

PBS control was injected intratumorally into HN12 xenograft tumor. Tumor volume

was monitored every other day to indicate tumor growth rate. In the HN12 tumor-

bearing mice, i.t. administration of G4-FA/siGFP polyplexes displayed no effect on

tumor growth rate, compared to i.t. administration of PBS control (Figure 5.24a),

because siGFP was used as a non-therapeutic control siRNA. This result indicated

G4-FA conjugate may serve as a biocompatible gene delivery vehicle. In contrast,

i.t. administration of G4-FA/siVEGFA polyplexes showed a delay in tumor growth

rate, compared to i.t. administration of G4-FA/siGFP polyplexes and PBS control

(Figure 5.24a). The live imaging of mice in each group was shown in Figure 5.25.

Qualitatively, the tumors from the mice treated with G4-FA/siVEGFA polyplexes

looked smaller than those from the mice treated with G4-FA/siGFP polyplexes and

PBS control at 12 d-post i.t. injection (Figure 5.25). Due to the limited number of

mice in each treatment group, we were unable to perform a comprehensive statistical

analysis for this experiment. However, this result still indicated G4-FA conjugates
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Figure 5.24: Antitumor effect of a single-dose injection of G4-FA/siVEGFA
polyplexes.
The tumor volume from the mice was determined at indicated time after intratumoral
(i.t.) injection of PBS, G4-FA/siGFP, and G4-FA/siVEGFA polyplexes (a). Body
weights of mice in all groups were recorded (b). Arrow bars indicate the day when
the mice were given injection. The dots and error bars are means SEM. n = 2-3.

might likely deliver siVEGFA to the tumor cells, knockdown VEGFA mRNA ex-

pression and reduce VEGFA secretion in the tumor cells, lower angiogenesis in the

tumor, and subsequently delay the tumor growth. Additionally, the body weight of

the mice treated with both polyplexes was similar to that of mice treated with PBS

(Figure 5.24b), which further supported no acute toxicity after i.t. administration of

G4-FA/siRNA polyplexes.

All the mice were sacrificed at 18 d-post i.t. injection, and the tumor tissues

were collected (Figure 5.26a). It was observed that the weight of tumor mass from

the mice i.t. injected with G4-FA/siVEGFA polyplexes decreased 55% compared

to that from the mice i.t. injected with PBS control (p = 0.0806) (Figure 5.26b).

Again, due to the limited number of mice in each treatment group, we were unable

to perform a comprehensive statistical analysis for this experiment. However, these

results indicate that G4-FA/siVEGFA polyplexes could slow the tumor growth via
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Figure 5.25: Qualitative presentations of the mice at indicated time after
intratumoral (i.t.) injection of PBS, G4-FA/siGFP, and G4-FA/siVEGFA
polyplexes.
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Figure 5.26: Antitumor effect of a single-dose injection of G4-FA/siVEGFA
polyplexes.
All the mice were sacrificed at 18 d-post intratumoral (i.t.) injection of PBS, G4-
FA/siGFP, and G4-FA/siVEGFA polyplexes. The tumor mass were then collected
(a) and weighted (b). The bars and error bars are means SEM. n = 2-3.

i.t. administration in the xenograft tumor model.

5.4.6.2 Two-dose administration

Our preliminary results from single-dose administration showed potential therapeutic

outcome of G4-FA/siVEGFA polyplexes. The noteworthy is that the tumors began

to grow at 8 d-post i.t. injection of G4-FA/siGFP polyplexes and PBS control. In

contrast, the tumors started to grow at 12 d-post i.t. injection of G4-FA/siVEGFA

polyplexes, yielding a 4 d delay in tumor growth rate (Figure 5.24a). Next, we raised

another question whether the tumor growth could be further inhibited by giving a

second dose before it started to grow. To answer this question, we gave two-dose

i.t. injection of G4-FA/siVEGFA polyplexes into HN12-YFP xenograft tumor and

evaluated corresponding therapeutic outcomes. In this experiment, we generated the

xenograft tumor by s.c. injection of HN12-YFP cells, which allowed real-time imaging

of fluorescence intensity, in addition to tumor volume measurement, to monitor tumor

growth. Besides, i.t. injections of PBS, siVEGFA alone, G4-FA/siVEGFA polyplexes,

and G4/siVEGFA polyplexes were used as experiment controls.
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i.t. administration of siVEGFA alone and G4-FA/siGFP polyplexes displayed

no effect on tumor growth rate, compared to i.t. administration of PBS control (Fig-

ure 5.27a). In contrast, i.t. administration of G4-FA/siVEGFA polyplexes showed a

significant inhibition in tumor growth rate, compared to i.t. administration of PBS

control (Figure 5.27a). By given a second dose injection of G4-FA/siVEGFA poly-

plexes, the tumor growth kept inhibited (Figure 5.27a), compared to the single-dose

injection (Figure 5.24a). The live imaging of mice (3/6 randomly selected) in each

group was also shown in Figure 5.28. Qualitatively, the size of the tumors from the

mice treated with G4-FA/siVEGFA polyplexes at 8 d-post second i.t. injection was

similar to that before first injection, and it displaced much smaller than those from

the mice treated with G4-FA/siGFP polyplexes, siRNA alone, and PBS control. In

contrast, i.t. administration of non-targeting G4/siVEGFA polyplexes also yielded

a decrease of tumor growth rate (Figure 5.24a). However, the inhibition was not

as strong as that of G4-FA/siVEGFA polyplexes. In addition, a severe skin lesion

from the tumor site was observed in the mice (6/6) after second dose i.t. injection

of G4/siVEGFA polyplexes (Figure 5.28), indicating the non-targeting G4/siVEGFA

polyplexes might accumulate in the skin tissue. The accumulated G4/siVEGFA poly-

plexes were potentially toxic to the skin tissues. According to the IACUC guidelines,

we had to sacrifice G4/siVEGFA polyplexes-treated mice before the experiment end

point. The body weight of the mice was similar in all the treatment groups except

G4/siVEGFA polyplexes treatment group, in which the body weight dropped after

second i.t. injection of G4/siVEGFA (Figure 5.24b). This result again supported

that i.t. administration of G4-FA/siRNA polyplexes caused no acute toxicity, but

the accumulated G4/siVEGFA polyplexes could cause acute toxicity to the mice.

Moreover, we employed IVIS 200 system to measure the fluorescence intensity

of the tumors at predetermined time intervals. Before the first i.t. injection, the

overall YFP fluorescence intensities of the tumors were similar among each treatment

group (Figure 5.29). At 8 d-post first i.t. injection, the mice treated with single-dose

of G4/siVEGFA and G4-FA/siVEGFA showed a decrease in the overall YFP fluores-
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Figure 5.27: Antitumor effect of two-dose injection of G4-FA/siVEGFA
polyplexes.
The tumor volume from the mice was determined at indicated time after intratu-
moral (i.t.) injection of PBS, siVEGFA alone, G4-FA/siGFP, G4/siVEGFA, and
G4-FA/siVEGFA polyplexes (a). Body weights of mice in all groups were recorded
(b). Arrow bars indicate the day when the mice were given injection. The dots and
error bars are means SEM. n = 6. * p < 0.05 versus the mice i.t. injected with PBS.
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Figure 5.28: Qualitative presentations of the mice at indicated time af-
ter intratumoral (i.t.) injection of PBS, siVEGFA alone, G4-FA/siGFP,
G4/siVEGFA, and G4-FA/siVEGFA polyplexes.
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cence intensities of tumors, compared to those treated with G4-FA/siGFP polyplexes,

siVEGFA alone, and PBS controls (Figure 5.30). A further decreased in YFP fluo-

rescence intensity was observed at 8 d-post second i.t. injection (Figure 5.31). The

fluorescence intensity results well agreed with the tumor volume measurement, both

of which were consistent with our preliminary results from single-dose administration

(Figure 5.24a).

All the mice were sacrificed at 10 d-post second i.t. injection, and the tumor

tissues were collected (Figure 5.32a). It was observed that the weight of tumor mass

from the mice i.t. injected with G4-FA/siVEGFA polyplexes decreased 71% compared

to that from the mice i.t. injected with PBS control (p = 0.0172) (Figure 5.32b). In

contrast, siVEGFA alone treatment has no effect on tumor mass weight, compared to

PBS control treatment. Although G4/siGFP polyplexes treatment slightly decreased

the tumor mass weight (p = 0.2020), the data was not reliable because a significant

tumor mass loss occurred at 8 d-post second i.t. injection of G4/siGFP polyplexes

(Figure 5.28).

The major mechanism of action of G4-FA/siVEGFA polyplexes is to deliver

siVEGFA into tumor cells and then reduce angiogenesis within the tumor. CD31

is an endothelial cell surface marker, primarily to demonstrate the presence of en-

dothelial cells in histological tissue sections [175]. Then, CD31 has been widely used

to evaluate the angiogenesis degree of tumor [256, 336, 280]. Finally, we evaluated

the angiogenesis level in the tumor tissue by immunohistochemical (IHC) staining of

CD31. The morphology of the tumor tissue was presented in Figure 5.33, indicat-

ing no tissue damage occurred in any tumor sample collected from PBS, siVEGFA,

G4-FA/siGFP, and G4-FA/siVEGFA treatment groups. In the IHC staining assess-

ment, an obvious decrease in CD31-positive tumor microvessels was observed upon

G4-FA/siVEGFA treatment compared to those of G4-FA/siGFP, siVEGFA alone,

and PBS treatments (Figure 5.34). The average microvessel counts (per 200× field)

in PBS, siVEGFA alone, and G4-FA/siGFP polyplexes-treated tumor tissue were
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Figure 5.29: Fluorescence images of the mice at 6 d-post subcutaneous
(s.c.) injection of HN12-YFP cells.
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Figure 5.30: Fluorescence images of the mice at 8 d-post first intratumoral
(i.t.) injection of PBS, siVEGFA alone, G4-FA/siGFP, G4/siVEGFA, and
G4-FA/siVEGFA polyplexes.
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Figure 5.31: Fluorescence images of the mice at 8 d-post second in-
tratumoral (i.t.) injection of PBS, siVEGFA alone, G4-FA/siGFP,
G4/siVEGFA, and G4-FA/siVEGFA polyplexes.
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Figure 5.32: Antitumor effect of two-dose injection of G4-FA/siVEGFA
polyplexes.
All the mice were sacrificed at 10 d-post second intratumoral (i.t.) injection of PBS,
siVEGFA alone, G4-FA/siGFP, G4/siVEGFA, and G4-FA/siVEGFA polyplexes. The
tumor mass were then collected (a) and weighted (b). The bars and error bars are
means SEM. n = 6. ?, the data is not comparable to the others due to the tumor
mass loss from the mouse in this group.

16.2, 16.3, and 15.0, respectively. These values were very close to the literature

report, in which the average microvessel count (per 100× field) was 39.4 in the saline-

treated KB-8-5 xenograft tumor [280]. In contrast, the average microvessels count

in G4-FA/siVEGFA polyplexes-treated tumor tissue was 6.8. A 58% decrease in the

average microvessels count was observed in the tumor treated with G4-FA/siVEGFA

polyplexes, compared to that of the tumor treated with PBS (Figure 5.35). Taken

together, our findings strongly suggest G4-FA conjugates can deliver siVEGFA to the

tumor cells through local injection, knockdown VEGFA mRNA expression, reduce

VEGFA secretion, lower angiogenesis in the tumor, and subsequently inhibit tumor

growth.
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Figure 5.33: Histological analysis to tumor morphology.
All the mice were sacrificed at 10 d-post second intratumoral (i.t.) injection of PBS,
siVEGFA alone, G4-FA/siGFP, G4/siVEGFA, and G4-FA/siVEGFA polyplexes. The
tumor tissues were fixed, embedded, sectioned, stained with hematoxylin and eosin
(H&E), and imaged using a magnification of 100× and 200×.
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Figure 5.34: Angiogenesis evaluation of tumor.
All the mice were sacrificed at 10 d-post second intratumoral (i.t.) injection of PBS,
siVEGFA alone, G4-FA/siGFP, G4/siVEGFA, and G4-FA/siVEGFA polyplexes. The
tumor tissues were fixed, embedded, sectioned, immunostained with CD31, counter-
stained with hematoxylin, and imaged using a magnification of 200×.
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Figure 5.35: Angiogenesis evaluation of tumor.
All the mice were sacrificed at 10 d-post second intratumoral (i.t.) injection of PBS,
siVEGFA alone, G4-FA/siGFP, G4/siVEGFA, and G4-FA/siVEGFA polyplexes. The
average microvessels counts (per 200× field) were quantitated as the number of CD31-
positive vessels in six randomly selected fields for each sample, and each group in-
cluded sections from 2 mice. The bars and error bars are means SEM. *** p < 0.001
versus the mice i.t. injected with PBS.

5.5 Conclusions

Our work has demonstrated that FR-targeted PAMAM dendrimer G4, G4-FA con-

jugates, could significantly increase the silencing efficiency of siRNA in HN12 cells,

which may contribute to reduced non-specific uptake of siRNA from peripheral tis-

sues, enhanced biocompatibility of polyplexes, and prolonged retention of siRNA

within tumors through i.t. administration. Using siVEGFA as a model siRNA, G4-

FA/siVEGFA polyplexes markedly reduced angiogenesis within the tumor and sub-

sequently inhibited tumor growth in an HN12 xenograft tumor model. These results

indicate that G4-FA conjugates could serve as a specific and efficient siRNA delivery

system for potential gene therapy in human head and neck squamous cell carcinoma

(HNSCC).
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Chapter 6

Click Synthesis of Polyamidoamine

Dendrimer-Camptothecin

Conjugates for Anticancer Drug

Delivery

Preface: This chapter has been prepared as a research article.

Olga Yu. Zolotarskaya, Leyuan Xu, Kristoffer Valerie, Hu Yang

6.1 Abstract

In the present work we report on the synthesis of a new camptothecin (CPT)-

carrying delivery system based on anionic polyamidoamine (PAMAM) dendrimer in-

tended for glioblastoma multiforme therapy. We applied “click” chemistry to improve

polymer-drug coupling reaction efficiency. Specifically, CPT was functionalized with

a spacer, 1-azido-3,6,9,12,15-pentaoxaoctadecan-18-oic acid (APO), via EDC/DMAP

coupling reaction. In parallel, propargylamine (PPA) and methoxypoly(ethylene gly-

col) amine were conjugated to PAMAM dendrimer G4.5 in sequence using an effective

coupling agent 4-(4,6-dimethoxy-(1,3,5)triazin-2-yl)-4-methyl-morpholinium chloride

(DMTMM). CPT-APO was then coupled to PEGylated PAMAM dendrimer G4.5-
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PPA via a click reaction using copper bromide/2,2’-bipyridine/dimethyl sulfoxide

(catalyst/ligand/solvent). Human glioma cells were exposed to the CPT-conjugate

to determine toxicity and cell cycle effects using WST-1 assay and flow cytometry.

The CPT-conjugate displayed a dose-dependent toxicity with an IC50 of 5 µM, a

185-fold increase relative to free CPT, presumably as a result of slow release. As ex-

pected, conjugated CPT resulted in G2/M arrest and cell death while the dendrimer

itself had little to no toxicity. Altogether, highly efficient click chemistry allows for

the synthesis of multifunctional dendrimers for sustained drug delivery.

6.2 Introduction

Glioblastoma multiforme (GBM) is an aggressive form of brain cancer with poor

prognosis and a median survival of only 12-15 months. In general, GBMs are resis-

tant to standard treatment consisting of surgery followed by concurrent chemo- and

radiotherapy [14]. New therapeutic approaches such as the use of small molecule

radiosensitizers and gene therapy are under investigation for the treatment of GBM

[15, 74]. However, treatment outcomes still depend largely on whether or not suf-

ficient levels of therapeutic agent can be delivered to the brain tumor mass [305].

Considering that the blood-brain barrier (BBB), the blood cerebral spinal fluid, and

the blood-tumor barrier hamper the administration of the therapeutic to the brain,

efficient delivery still remains a challenge, and new technologies and delivery sys-

tems need to be developed [145, 104]. A number of carriers have been developed

to facilitate drug entry into the brain, a topic which has been thoroughly reviewed

[14, 305, 104, 127, 197]. Among them, dendrimers have attracted increasing atten-

tion as drug carriers in that they possess a high degree of molecular uniformity, high

drug loading capacity, and the ability to accommodate various functional entities

[260, 259, 173]. Thus, the dendrimer-based platform would be very attractive for

building modular drug delivery vehicles12-15, and its utility for delivering anticancer

drugs has been actively explored [84, 98, 169, 337].

Early studies have shown promising results with dendrimers as drug delivery
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vehicle making it a feasible platform for further development [102, 113, 319]. Drugs

along with BBB-specific ligands can be covalently coupled to the multivalent den-

drimer for targeted drug delivery to the brain. Regardless, a commonly encountered

problem is the heterogeneity of ligand and drug on the dendrimer surface during

chemical synthesis [236]. It is essential to obtain a uniform distribution of ligand

and drug for standardizing therapeutic effects and for the successful translation of

dendrimer-based nanomedicines to clinical application. Robust and efficient coupling

methods must be applied to overcome such issues. To develop an enabling mod-

ular dendrimer-based delivery system for GBM, the current study reports on the

use of click chemistry for the synthesis of water soluble polyamidoamine (PAMAM)

dendrimer-camptothecin (CPT) conjugates. Camptothecin is a plant alkaloid isolated

from Camptotheca acuminata of the Nyssaceae family with remarkable anticancer ac-

tivity by inhibiting both DNA and RNA synthesis [156]. Camptothecin has been used

for the treatment of many different types of cancer despite its low water solubility

and poor stability of the lactone form, a required form for therapeutic activity [338].

In particular, it is of advantage to use CPT to treat GBM as it selectively kills pro-

liferating (S-phase) cells, thus exerting little to no toxicity to non-dividing normal

cells resident of the brain [33, 157]. Although several dendrimer-CPT derivatives

have been made in the past, the efficiency using high capacity of dendrimer to de-

liver CPT was low. For instance, Thiagarajan et al. applied EDC/NHS chemistry to

conjugate CPT to the dendrimer via a glycine spacer [258]. Less than 20% of CPT

used in the reaction was successfully attached to the dendrimer. Copper-catalyzed

azide-alkyne cycloaddition (CuAAC), the best known example of a “click” reaction,

is a highly efficient and selective synthetic method. It has proven to be a powerful

strategy for precisely loading drugs to various polymeric carriers including dendrimers

[134, 338, 97]. In the present study, we applied CuAAC for improving coupling re-

action efficiency and to synthesize CPT-dendrimer conjugates. Anionic PAMAM

dendrimer G4.5 was used as the carrier because of low toxicity and low non-specific

cellular uptake. It was modified with polyethylene glycol (PEG) for improved water

solubility and cytocompatibility. CPT was click coupled to the dendrimer carrier
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via a short heterobifunctional spacer. The click synthesis and characterization of the

resulting conjugates and their therapeutic activity are reported herein.

6.3 Experimental Section

6.3.1 Materials

EDA core PAMAM dendrimer G4.5 caboxylate sodium salt was purchased from

Dendritech (Midland, MI). 2,2’-Bipyridine, 4-dimethylaminopyridine (DMAP), cop-

per(II) sulfate (CuSO4), (+)-sodium L-ascorbate, 4-(4,6-dimethoxy-(1,3,5)triazin-2-

yl)-4-methylmorpholinium chloride (DMTMM), deuterated solvents, dichloromethane

(DCM), dimethyl sulfoxide (DMSO), and other organic solvents were purchased from

Acros (Morris Plains, NJ). (S)-(+)-Camptothecin (CPT), propargylamine (PPA),

copper bromide (CuBr), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochlo-

ride (EDC), and silica gel 60 (40-63 µm, 230-400 mesh) were purchased from Sigma-

Aldrich (St. Louis, MO). 1-Azido-3,6,9,12,15-pentaoxaoctadecan-18-oic acid (APO)

and methoxypoly(ethylene glycol) amine (mPEG-NH2, 2000 g/mol) were purchased

from Biomatrik (Jiaxing, Zhejiang, China) and JenKem Technology USA (Plano,

TX), respectively. SnakeSkin dialysis tubing 3.5 kDa and 7 kDa MWCO and mag-

nesium sulfate (MgSO4) were purchased from Thermo Fisher Scientific (Pittsburg,

PA).

6.3.2 Instrumentation

1H NMR spectra were recorded on a Bruker AVANCEIII 600 MHz spectrometer.

UV/Vis spectra were acquired on an Agilent 8453 spectrophotometer.

6.3.3 Synthesis of CPT-APO

To a suspension of CPT (200 mg, 0.57 mmol) in 60 mL of DCM were added EDC

(330 mg, 1.73 mmol) and DMAP (140 mg, 1.14 mmol) followed by APO (290 mg,

0.86 mmol) pre-dissolved in 5 mL of DCM. After having been stirred for 24 h at room
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temperature, the reaction mixture was poured into 50 mL of water. The organic phase

was collected. The aqueous phase was extracted with DCM two times. The DCM

fractions were combined and dried over MgSO4. Upon the removal of DCM by rotary

evaporation, the obtained CPT-APO was further purified by column chromatography

on silica gel using DCM/methanol mixture (90/2.5, v/v). Yield 67%. 1H NMR (d6-

DMSO, 600 MHz): δ (ppm) 8.68 (s, 1H), 8.15 (d, J=8.5 Hz, 1H), 8.12 (d, J=8.2 Hz,

1H), 7.86 (t, J= 7.9Hz, 1H), 7.71 (t, J=7.5 Hz, 1H), 7.16 (s, 1H,), 5.50 (s, 2H), 5.28

(q, 2H), 3.83-3.33 (m, 22H), 2.81 (m, 1H), 2.66 (m, 1H), 2.14 (m, 2H), 0.94 (t, J

=7.4Hz, 3H).

6.3.4 Synthesis of G4.5-PPA

To a solution of PAMAM dendrimer G4.5 in carboxyl form (50 mg, 2.1 µmol) in 3

mL of 0.1M NaHCO3 was added DMTMM (58 mg, 0.21 mmol) followed by addition

of 0.5 mL of DMF containing 0.13 mmol PPA. The reaction mixture was stirred

overnight. Upon removal of the solvent under reduced pressure, the remaining residue

was dialyzed against water using dialysis tube with MWCO 3.5 kDa and freeze-dried

to yield 53 mg of G4.5-PPA. 1H NMR (D2O, 600 MHz): δ (ppm) 3.98 (m, 2H,

CH2C≡CH), 2.43-3.69 (m, methylene protons of G4.5).

6.3.5 Synthesis of PPA-G4.5-PEG Conjugates

To a solution of G4.5-PPA (40 mg, 1.7 µmol) and DMTMM (17 mg, 0.061 mmol)

in 4 mL of 0.1M NaHCO3 was added mPEG-NH2 (102 mg, 51 µmol). The obtained

mixture was stirred overnight at room temperature, dialyzed against water using

dialysis tubing with 7.0 kDa MWCO for 48 h, and then freeze-dried to obtain 86

mg of PPA-G4.5-PEG. 1H NMR (D2O, 600 MHz): δ (ppm) 3.99 (m, 2H), 3.73 (br.s,

methylene protons in PEG repeat units), 3.41 (s, 3H), 3.40-2.42 (m, methylene protons

of G4.5).
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Figure 6.1: Synthesis of CPT-G4.5-PEG conjugates.

6.3.6 Synthesis of CPT-G4.5-PEG Conjugates

PPA-G4.5-PEG (20 mg, 0.26 µmol), CPT-APO (2.9 mg, 4.4 µmol), and 2,2-bipyridine

(0.6 mg, 3.8 µmol) were mixed in 1 mL of DMSO. The molar feed ratio of CPT to

dendrimer in this reaction was 17:1, which was determined based on availability as-

sessment for the alkyne groups on the dendrimer (see Supporting Information). The

obtained mixture underwent 3 times of freeze-pump-thaw cycling for degassing. Af-

terwards, CuBr (0.3 mg, 2.1 µmol) dissolved in 40 µL of DMSO was added to the

mixture solution. The reaction mixture under nitrogen was stirred in dark overnight

at room temperature and then poured into 5 mL of water. After 1 h-stirring, the

solvents were removed under reduced pressure. Extraction of unreacted CPT-APO

was conducted by vortexing the obtained solid residue with ether (1 mL each time)

followed by centrifugation for liquid-solid separation. The extraction procedure was

repeated until CPT-APO became undetectable in ether by UV-Vis spectrophotome-

ter. The remaining solid was dissolved in 1 mL of water followed by centrifugation.

The liquid phase was collected and freeze-dried to yield CPT-G4.5-PEG. UV-Vis

spectroscopy analysis confirmed that conjugated CPT accounted for 6.4 wt.% of the

product. 1H NMR (d6-DMSO, 600 MHz): δ (ppm) 8.64 (br.s, 1H), 8.12 (br.s, 2H),

7.85 (br.s, 2H), 7.68 (br.s, 1H), 7.14 (br.s, 1H), 5.50 (s, 2H), 5.26 (br.s, 2H), 4.44

(br.s, 2H), 4.26 (br.s, 2H), 3.50 (br.s, methylene protons in the repeat unit of PEG),

3.23 (s, 3H), 2.06-2.95 (m, methylene protons of G4.5), 0.94 (s, 3H).
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6.3.7 Cell Culture

Human glioma U1242 cells were cultured in Dulbeccos modified Eagles medium

(DMEM) supplemented with 10% Cosmic calf serum at 37 ◦C in 95% air/5% CO2

[73].

6.3.8 Cytotoxicity Assay

Human glioma U1242 cells were seeded at a density of 1×104 cells/well in a 96-

well cell culture plate and cultured for 1 day to allow cell attachment. The cells

were then treated with various concentrations (0-50 µM) of CPT in either free or

conjugated form for 2 days. For comparison, toxicity of PPA-G4.5-PEG conjugates

at the same molar concentrations as CPT-G4.5-PEG conjugates was used as control.

Cell viability relative to untreated and control-treated cells was then determined by

WST-1 proliferation assay. GraphPad Prism 5 was used to perform the curve fitting

and then determine the 50% maximal inhibitory concentrations of free CPT (IC50free)

and conjugated CPT (IC50conjugated).

6.3.9 Cell Cycle Analysis

Human glioma U1242 cells (1×106) were seeded in a 100-mm cell culture dish and

cultured for 1 day to allow cell attachment. The cells were treated with CPT at the

concentration of 2×IC50free, conjugated CPT at the concentration of 2×IC50cojugated

and PPA-G4.5-PEG conjugates at the equivalent concentration of CPT-G4.5-PEG

conjugates for various lengths of time (6, 12, and 24 h). The cells treated with PBS

were used as a control. At the end of each treatment, the cells were washed with PBS

and re-suspended in fresh cell culture medium following trypsinization. Following the

centrifugal removal of the medium, the cells were fixed with cold 70% ethanol and

maintained at 4 ◦C for 1 h. Finally, the cells were washed with PBS three times and

incubated with RNase at a final concentration of 1 µg/mL and propidium iodide at a

final concentration of 50 µg/mL at 37 ◦C for 30 min. The cells were then immediately

analyzed by flow cytometry using a Guava EasyCyte mini flow cytometry system
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(Millipore, Billerica, MA) [321].

6.4 Results and Discussion

6.4.1 Synthesis and characterization

We synthesized clickable PAMAM dendrimer G4.5 and used it as a carrier to de-

liver CPT. Taking into consideration that cell membranes are negatively charged, the

use of anionic half-generated PAMAM dendrimers terminated with carboxylic acid

groups is expected to minimize nonspecific cellular uptake and reduce drug side ef-

fect. Given the hydrophobicity of CPT, the dendrimer drug loading degree should be

carefully controlled to avoid generating water insoluble entities. The incorporation of

hydrophilic molecules such as PEG onto the dendrimer surface has proven effective

in improving water solubility and enhancing cytocompatibility [308, 309]. Thus, this

step was applied in the synthesis of our dendrimer-CPT conjugates. A short hetero-

bifunctional spacer, i.e., APO bearing azide and carboxyl groups (Figure 6.2), was

used to modify CPT. CPT was coupled to APO via EDC/DMAP chemistry. The

reaction proceeded successfully in methylene chloride. A 1H NMR spectrum clearly

shows proton signals from both CPT and APO (Figure 6.3). In particular, multi-

ple proton signals between 3.40 and 3.83 ppm are from methylene protons in APO.

The signal at 5.28 ppm is assigned to the two methylene protons in the CPT lactone

ring, indicating that therapeutically active lactone form remained. A double doublet

for the methylene protons in the lactone ring was also clearly seen in the 1H NMR

spectrum based on CDCl3 (Figure 6.4).

To make clickable dendrimers, alkyne groups were introduced onto the PA-

MAM dendrimer surface via reaction with PPA using coupling reagent DMTMM. 1H

NMR spectrum of G4.5-PPA (Figure 6.5) shows multiple peaks of dendrimer methy-

lene protons in the range 2.43-3.69 ppm along with multiplet at 3.98 ppm assigned to

methylene protons (a) adjacent to the alkyne group of PPA, confirming the successful
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Figure 6.2: 1H NMR spectrum of APO in CDCl3.

Figure 6.3: 1H NMR spectrum of CPT-APO in d6-DMSO.

Figure 6.4: 1H NMR spectrum of CPT-APO in CDCl3.
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Figure 6.5: 1H NMR spectrum of G4.5-PPA in D2O.

Figure 6.6: 1H NMR spectrum of PPA-G4.5-PEG in D2O.

amide bond formation. Based on the 1H NMR integration analysis, the synthesized

G4.5-PPA conjugates carried 30 alkyne groups per dendrimer.

G4.5-PPA was further PEGylated by coupling mPEG-NH2 (2000 Da) to the

dendrimer surface in the presence of DMTMM. The 1H NMR spectrum shown in

Figure 6.6 confirms successful covalent attachment of mPEG to G4.5-PPA. In addition

to the identification of the proton signals from PPA and dendrimer moieties, a broad

singlet centered at 3.73 ppm is assigned to the methylene protons of PEG repeat

units while a singlet at 3.41 ppm is due to the methyl protons. Based on the 1H

NMR spectrum, the degree of PEGylation was calculated to be 27.

The final step of the synthesis involves a click reaction between alkyne-carrying
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PEGylated PAMAM dendrimer G4.5 (i.e., PPA-G4.5-PEG) and azide-carrying CPT

(i.e., CPTAPO) in the presence of CuBr/2,2-bipyridine (catalyst/ligand) system in

DMSO. The feed molar ratio (17:1) of CPT to dendrimer was first determined. To a

water solution (4 mL) containing G4.5-PPA (8 mg, 0.34 µmol) and an excess amount

of APO (14.6 mg, 43 µmol) was added CuSO4 (5.4 mg, 22 µmol) followed by sodium

ascorbate (8.6 mg, 43 µmol). The obtained mixture was stirred overnight at 55 ◦C

under nitrogen. After cooling down the reaction mixture was dialyzed against 5%

aqueous solution of EDTA for 8 h, against water for 24 h and then freeze-dried.

(D2O, 600 MHz): δ (ppm) 7.99 (m, 1H), 4.63 (br.s, 2H), 4.49 (m, 2H), 3.99 (m,

2H), 3.55-3.79 (m, methylene protons of PEG repeat units), 2.32-3.47 (m, methylene

protons of G4.5). The formation of the triazole linker was supported by appearance of

the signal at 7.99 ppm assigned to methine proton b. Furthermore, a broad singlet at

4.63 ppm and proton signals in the range 3.55-3.79 ppm are assigned to the methylene

protons (c) adjacent to the triazole ring and the methylene protons (d’, e’, and f’) of

PEG, respectively. The simultaneous presence of multiplet at 4.49 ppm (a) assigned

to methylene protons adjacent to the triazole ring and broad singlet at 3.99 ppm (a)

assigned to the unreacted acetylene groups indicates not all alkynes on the dendrimer

surface are available for click reaction. Proton NMR integrations showed that an

average of 17 alkyne groups were successfully click coupled with azide-containing

APO (Figure 6.7). Using the alkyne accessibility analysis result as a guide, the feed

molar ratio (17:1) of CPT to dendrimer was used in the click reaction. The resulting

CPT-G4.5-PEG conjugates were characterized by 1H NMR spectroscopy. The proton

signals of CPT and spacer APO in the conjugates are identified in Figure 6.8. A

further downfield shift of the signal of methylene protons (a’, 4.26 ppm) adjacent to

the ring opposed to proton signal (a’, 3.99 ppm) resulted from the triazole linkage

formation. In addition, methine proton (b) in the triazole ring appears as a singlet

at 7.85 ppm, overlapping the benzene proton signal of CPT. The proton signal at

3.99 ppm (a) indicates the presence of remaining alkyne groups. Because of proton

signal interference by the deuterated solvent d6-DMSO in the spectrum, CPT coupled

to the conjugates was quantified by using UV-Vis spectroscopy. Based on the UV
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Figure 6.7: Assessment of reactivity and accessibility of alkyne in G4.5-
PPA conjugates for click reaction.

Figure 6.8: 1H NMR spectrum of CPT-G4.5-PEG in d6-DMSO.

absorbance at 347 nm, the final polymer-drug conjugates carried approximately 17

CPT molecules per dendrimer. The estimated drug loading degree matches the feed

molar ratio used in the click reaction, indicating a 100% conversion rate for the utility

of CPT in the click reaction. Making water soluble conjugates with a higher CPT

loading will be explored in the future.

6.4.2 Cytotoxicity evaluation

CPT interferes with the breakage-reunion reaction of DNA topoisomerase I (Top1)

often referred to as the cleavable complex necessary to relieve DNA stress during
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A B 

Figure 6.9: Cytotoxicity of free CPT, CPT-G4.5-PEG and PPA-G4.5-PEG
conjugates in U1242 cells. The data points are mean ± SD.

DNA replication [156]. In doing so, a ternary complex between Top1-CPT-DNA

is formed which is converted into single-strand breaks and subsequently into double-

strand breaks during DNA replication. The cytotoxicity of the synthesized conjugates

to human glioma U1242 cells was then assessed. CPT-G4.5-PEG cytotoxicity was

found to be dose-dependent with an IC50 of 5 µM (Figure 6.9A). In comparison, the

IC50 of free CPT was 27 nM. Conjugated CPT is expected to become therapeutically

active following hydrolysis of the ester linkage between CPT and the dendrimer. As

expected, the conjugated CPT exhibited much lower potency than free CPT at equiv-

alent concentrations because of this slow release. Thus, the conjugates are capable

of sustaining therapeutic activity for a longer period of time. PEGylated PAMAM

dendrimer carrier without CPT is cytocompatible and does not cause toxicity to cells

at concentrations up to 50 µM (Figure 6.9B).

Prolonged exposure to CPT is expected to bring about DNA double-strand

breaks during replication hence resulting in an arrest in G2/M of the cell cycle if not

repaired [33, 245]. We performed cell cycle analyses following treatment with PBS,

free CPT, CPT-G4.5-PEG or dendrimer carrier. As shown in Figure 6, cells treated

with free CPT or CPT-G4.5-PEG conjugate exhibited a remarkable decrease in the

G0/G1 cell population and an increase in G2/M going from a little more than 20% to

more than 40% over a period of 24 h. Untreated cells (PBS group) showed a normal
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cell cycle distribution with a larger fraction in the G0/G1 phase. The cells treated

with PPA-G4.5-PEG conjugate showed a similar cell cycle distribution as untreated

cells, indicating that the PPA-G4.5-PEG conjugate had little to no effect on cell

cycle progression. Consistent with cytotoxicity assessment, cell cycle analyses further

demonstrated that CPT-G4.5-PEG induced an arrest in G2/M and lead to apoptosis

as indicated by a temporal increase in the sub-G1 population.

6.5 Conclusions

CPT was coupled to PEGylated PAMAM dendrimer G4.5 via copper-catalyzed click

reaction. Nearly 100% of CPT molecules used in the reaction were covalently con-

jugated to the dendrimer. The resulting conjugates carried an average of 17 CPT

molecules per dendrimer and demonstrated dose-dependent toxicity against human

glioma U1242 cells by causing an arrest in G2/M and inducing cell death while the

carrier itself had no toxicity. Conjugated CPT was found to have an IC50 of 5 µM,

a 185-fold increase in comparison to the IC50 of free CPT as a result of slow release.

One the other hand, the presence of a targeting moiety on the surface of a den-

drimer molecule whose receptors are overexpressed on cancer cell membrane surface

will provide the delivery of PAMAM dendrimer-drug conjugate to the tissue of the

interest and improve specific uptake of the drug. In future studies, coupling tumor-

and BBB-specific ligands or other functional moieties to the synthesized dendrimer-

CPT conjugates via click chemistry will be explored for directing and enhancing drug

uptake by brain tumor cells. The further utility of click chemistry based coupling

strategy would make it possible to make large-scale polymerdrug-ligand conjugates

of high quality possessing a uniform loading of ligand and drug on the dendrimer

surface, a critical factor for achieving reproducible antitumor efficacy.
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Figure 6.10: Cell cycle analysis.
U1242 cells were left untreated (control), CPT at the concentration of 2×IC50free, con-
jugated CPT at the concentration of 2×IC50cojugated, and PPA-G4.5-PEG conjugates
at the equivalent concentration of CPT-G4.5-PEG conjugates for various lengths of
time (6, 12, and 24 h).
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Chapter 7

Click Hybridization of Immune

Cells and Polyamidoamine

Dendrimers

Preface: This chapter has been published as a research article.

Leyuan Xu, Olga Yu. Zolotarskaya, W. Andrew Yeudall, Hu Yang

Advanced Healthcare Materials: 2014; Volume 3, Issue 9, pages 1430-1438

7.1 Abstract

Immobilizing highly branched polyamidoamine (PAMAM) dendrimers to the cell sur-

face represents an innovative method of enhancing cell surface loading capacity to de-

liver therapeutic and imaging agents. In this work, hybridized immune cells, that is,

macrophage RAW264.7 (RAW), with PAMAM dendrimer G4.0 (DEN) on the basis

of bioorthogonal chemistry are clicked. Efficient and selective cell surface immobi-

lization of dendrimers is confirmed by confocal microscopy. Viability and motility of

RAW-DEN hybrids remain the same as untreated RAW cells according to WST-1 as-

say and wound closure assay. Furthermore, Western blot analysis reveals that there

are no significant alterations in the expression levels of signaling molecules AKT,

p38, and NFκB (p65) and their corresponding activated (phosphorylated) forms in
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RAW cells treated with azido sugar and dendrimer, indicating that the hybridization

process neither induced cell stress response nor altered normal signaling pathways.

Taken together, this work shows the feasibility of applying bioorthogonal chemistry

to create cell-nanoparticle hybrids and demonstrates the noninvasiveness of this cell

surface engineering approach.

7.2 Introduction

Immune cells such as monocytes and macrophages actively infiltrate the tumor mass

in response to tumor invasion, recurrence, and metastasis or tumor hypoxia [61, 21].

Such cell types with their endogenous cancer-targeting and -attacking abilities are

promising carriers to deliver therapeutics to the inner core of solid tumors, which

is often inaccessible to standard modalities. A few early studies have demonstrated

the use of macrophages as carriers to deliver anticancer genes and gold particles via

phagocytosis [21, 77, 202, 35]. However, phagocytosis is not applicable to cell-based

anticancer drug delivery. Anticancer drugs cannot be directly loaded into the cellular

vehicle or loosely encapsulated on the cell surface because of the detrimental impact

of their inherent toxicity on cell viability and functions. Resolution of this issue is

critical to the realization of the potential of this therapeutic approach. Recently, we

reported an innovative method of using macrophages as carriers by hybridizing them

with polyamidoamine (PAMAM) dendrimers through cell surface modifications [92].

Dendrimers are well-fined highly branched macromolecules possessing a high density

of surface groups [e.g., 64 primary amine groups for ethylenediamine (EDA) core PA-

MAM dendrimer G4.0] [261, 19]. As illustrated in Figure 7.1, anchoring dendrimer

macromolecules at the cell surface would considerably expand cell surface loading

capacity. This hybrid vector is envisioned to have several appealing characteristics.

Because of the possession of a number of terminal groups by dendrimer, a high pay-

load of anticancer drugs can be covalently conjugated to the cell surface without

causing toxicity to the carrier cell as a result of avoidance of burst release. Highly

adaptable structures of dendrimers are suitable for delivery of imaging reagents and
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functional moieties that help with cancer treatment, diagnosis, or understanding of

cellular behaviors in the context of tumorigenesis [8, 169, 170, 196, 337, 339]. In this

way, nanoparticles become truly “stealth”, sneaking past the body’s immune system.

Monocytes/macrophages themselves are native to the human body and take surface-

anchored dendrimers to the therapeutically relevant tissue sites and this hybrid vector

will serve as personalized medicine to treat individual patients, which may also result

in enhanced therapeutic efficacy by making more anticancer drugs available to cancer

cells or tumor mass.

In our previous approach, we chemically treated macrophages with sodium pe-

riodate to generate aldehyde groups on the cell surface and then made them react

with amine-terminated PEG-dendrimers to form transient Schiff base linkages [92].

Further treatment with sodium cyanoborohydride converted the Schiff base linkages

to stable amide linkages. This multistep chemical approach relies on existing sialic

acids on the cell surface, which can be a potential limit for nanoparticle loading.

To hybridize the surface of immune cells with dendrimers, it is critical to enhance

cell-nanoparticle hybridization reaction efficiency and avoid extensive chemical mod-

ifications or damages to the cellular vehicle. Bioorthogonal chemistry developed by

Bertozzi has emerged as a powerful tool for live cell surface labeling because of high

efficiency and high selectivity [227, 240, 239, 25]. Strain-promoted azide-alkyne cy-

cloaddition (SPAAC), commonly referred to as copper-free click chemistry, is the best

known example. It has been shown that the copper-free click reaction proceeds within

minutes on live cells with no apparent toxicity comparing to the copper-catalyzed re-

action [13]. Furthermore, it minimally interferes with a biological system [240].

For the first time, we have applied this novel chemistry to develop an advanced

nanosurface engineering method of creating cell-dendrimer hybrids. In this work,

clickable dendrimers were synthesized by coupling dibenzocyclooctyne (DIBO) alkyne

to PAMAM dendrimer G4.0 followed by FITC labeling. RAW264.7 macrophages

(RAW) were cultured in the presence of azido sugar, in order to express azides on the

cell surface. Azide-expressing macrophages were then hybridized with clickable den-

drimers following SPAAC reaction. Localization of fluorescently-labeled dendrimers
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following hybridization was determined using confocal microscopy. To ensure the

preservation of cell viability and functions throughout the cell-nanoparticle hybridiza-

tion process, the effects of the bioorthogonal chemistry-based hybridization process

on biological functions of RAW cells were investigated. In particular, cell viability,

motility, and key intracellular signaling pathways were examined.

7.3 Experimental Section

7.3.1 Materials

EDA core PAMAM dendrimer generation 4.0 (technical grade) was purchased from

Dendritech (Midland, MI).N -hydroxysuccinimide (NHS), peracetylatedN -azidoacetyl-

mannosamine (Ac4ManNAz), 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydro-

chloride (EDC), N ,N -diisopropylethylamine (DIPEA), Dimethyl sulfoxide (DMSO),

and fluorescein isothiocyanate (FITC) were purchased from Sigma-Aldrich (St. Louis,

MO). Click-IT succinimidyl ester DIBO alkyne (simply referred to as DIBO) was

purchased from Life Technologies (Grand Island, NY). 4’,6-diamidino-2-phenylindole

(DAPI), sodium hydroxide, paraformaldehyde, and phosphate-buffered saline (PBS)

were purchased from Fisher Scientific (Pittsburgh, PA). Cell proliferation reagent

WST-1 was purchased from Roche Applied Science (Indianapolis, IN). NFκB p65,

phospho-NFκB p65 (Ser536), p38 MAPK, phospho-p38 MAPK (Thr180/Tyr182),

and phospho-Akt (Ser473) antibodies were purchased from Cell Signaling Technol-

ogy (Danvers, MA). AKT1 (559028) antibody was purchased from BD Biosciences

Pharmingen (Mississauga, ON, Canada). β-actin (ACTBD11B7) antibody was pur-

chased from Santa Cruz Biotechnology (Santa Cruz, CA). Goat anti-rabbit antibody

conjugated to horseradish peroxidase and goat anti-mouse antibody conjugated to

horseradish peroxidase were purchased from Bio-Rad (Hercules, CA).
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Figure 7.1: Immune cell-nanoparticle hybrid vector represents a novel
platform for delivery of therapeutic and imaging reagents through cell
surface modification.
Immune cells are removed from the animal, and azides are metabolically introduced
into cell-surface glycans. Polyamidoamine (PAMAM) dendrimer undergoes a series of
surface functionalization chemistries to possess strain-promoted alkyne, drug, imag-
ing agent, and other moieties of interest. Azide-expressing cells are then incubated
with functionalized clickable dendrimers to form cell-nanoparticle hybrids following a
highly efficient selective bioorthogonal reaction, namely strain-promoted azide-alkyne
cycloaddition in water under physiological conditions without using any additional
reagents. Following ex vivo cell surface engineering, the hybrid vehicles are injected
back to the same animal for therapeutic and/or diagnostic treatment.
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7.3.2 Cell Culture

RAW264.7 (RAW), a mouse monocyte/macrophage cell line (purchased from ATCC,

Manassas, VA), was used in this work. RAW cells were cultured in Dulbecco’s modifi-

cation of Eagle’s medium (DMEM) (Life Technologies, Grand Island, NY) containing

high glucose and supplemented with L-glutamine, 10% (v/v) fetal bovine serum (FBS)

(Fisher Scientific, Pittsburgh, PA), 100 units mL−1 of penicillin, and 100 µg mL−1 of

streptomycin (both from Thermo Fisher Scientific, Ashville, NC) at 37 ◦C in a humid

environment with 5% CO2 [144].

7.3.3 Synthesis of Clickable PAMAM Dendrimers

As illustrated in Figure 7.2, the synthesis is a one-step reaction. Briefly, following

removal of methanol from the stock solution, PAMAM dendrimer G4.0 (0.135 µmol,

1 equiv.) was dissolved in DMSO (300 µL) and then mixed with DIPEA (30 equiv.).

DIBO (5 equiv.) was dissolved in DMSO (100 µL) and then added, dropwise, into

the dendrimer solution while stirring. The reaction proceeded at room temperature

overnight followed by removal of DMSO under vacuum.

7.3.4 FITC Labeling

FITC as a fluorescent probe (green) was used for dendrimer labeling. FITC was

dissolved in DMSO and then added, dropwise, to DMSO solution of dendrimer

(G4.0-DIBO or G4.0) in the presence of DIPEA, in which the molar ratio of DI-

PEA:FITC:dendrimer was 30:5:1. The reaction mixture was stirred overnight in the

dark, followed by removal of DMSO under vacuum.

7.3.5 General Click Cell-Dendrimer Hybridization Procedures

Prior to surface treatment, azides were metabolically introduced to the surface of

RAW cells by incubating RAW cells in culture medium containing azido sugar Ac4Man-

NAz (50 × 10−6 M) for 2 d. The resulting RAW cells expressing azides on the surface
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(i.e., RAW-N3 cells) were washed three times with pH 7.4 PBS. RAW-N3 cells were

then treated with G4.0(FITC)-DIBO (25 × 10−6 M) (1:100 dilution in PBS from a 2.5

× 10−3 M dendrimer DMSO solution) for 10 min at room temperature to hybridize

RAW-N3 cells with clickable dendrimer following copper-free click reaction on the

cell surface. The resultant RAW-DEN hybrids were washed with PBS three times

and subjected to the various assays described below. For comparison, hybridization

between RAW cell and dendrimer devoid of complementarily reactive azide, DIBO,

or both, was conducted under the same conditions as for RAW-DEN hybridization

(i.e., RAW-N3/G4.0(FITC), RAW/G4.0(FITC), and RAW/G4.0(FITC)-DIBO), and

the resulting treatment groups were investigated along with RAW-DEN hybrids.

7.3.6 Confocal Microscopy

To study uptake and localization of dendrimer nanoparticles, following the treatments

described above, RAW cells were fixed with 4% paraformaldehyde immediately and

nuclei were counterstained with DAPI (blue). The fixed cells were imaged under a

Zeiss LSM 700 confocal laser scanning microscope using a magnification of 630×.

Images were analyzed using ImageJ [229].

7.3.7 Cell Viability Assessment

Immediately following treatment, cell viability of five groups - RAW(control), RAW-

DEN, RAW-N3, RAW/G4.0(FITC)-DIBO, RAW-N3/G4.0(FITC) - was determined

by WST-1 cell proliferation assay following the manufacturer’s protocol. The relative

cell viability was normalized with respect to the viability of the control group. Briefly,

the cells were incubated with WST-1 reagent (10 µL) in the cell culture media (100

µL) for 30 min. The absorbance of each sample solution was then measured at 450

nm against a background control as blank. The wavelength of 650 nm was used as

the reference wavelength.
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7.3.8 Western Blot Analysis

To examine whether or not key cellular signaling pathways in RAW cells might be

affected by azido sugar culture and G4.0(FITC)-DIBO treatment, Western blot anal-

ysis of total cellular protein in RAW-N3 and RAW-DEN cellular vehicles was car-

ried out following procedures described previously [292]. Briefly, total cell lysates

(30 µg of protein) were separated on a 10% SDS-PAGE gel and transferred onto a

polyvinylidene difluoride (PVDF) membrane. The membrane was blocked for 2 h

in Tris-buffered saline (TBS) containing 5% non-fat dry milk. The specific proteins

on the membrane were determined by incubation with primary antibodies overnight

at 4 ◦C with shaking. After washing in TBS containing 0.5% Tween 20, the mem-

brane was incubated in a 1:3000 dilution of appropriate secondary antibody at room

temperature for 1 h in wash buffer. The specific antigen-antibody interactions were

detected using enhanced chemiluminescence (Pierce ECL Western Blotting Substrate)

(Thermo Scientific, Rockford, IL). β-actin was used as a loading control.

7.3.9 Wound Closure Assay

Motility of cellular vehicles (i.e., RAW, RAW-N3, and RAW-DEN, three wells for each

type of cellular vehicle) was assessed using wound-closure (scratch) assays. Briefly,

RAW cells were plated in 12-well cell culture plates. When the cells reached 80%

confluence, the cell culture medium was replaced with fresh culture medium either

containing 50 × 10−6 M Ac4ManNAz or free of azido sugar. When the cells reached

100% confluence, one group of RAW cells (three wells) fed with azido sugar was further

treated with G4.0-DIBO (25 × 10−6 M ) in PBS for 10 min to generate RAW-DEN

hybrids. The fully confluent cells were washed three times with PBS. A sterile pipette

tip was then used to denude the surface of each well. Following complete removal

of the cells within the scratch area, each well was washed three times with PBS and

then replaced with fresh cell culture medium. The width of the scratch was measured

at three different points using a light microscope and AxioVision software (Carl Zeiss

Microimaging, Thornwood, NY). Following 20-h culture at 37 ◦C, the scratch width

190



was measured again at the same positions. Cell migration rate was calculated as

follows: Motility = (Widthaverage,0h - Widthaverage,20h) / 20h [313].

7.3.10 Statistical Analysis

All the data were expressed as mean ± standard deviation (SD) and subjected to one

way analysis of variance (ANOVA) followed by Student t-test for unpaired samples.

A value of p < 0.05 was considered as statistically significant.

7.4 Results

7.4.1 Bioorthogonal Chemistry-Based Cell-Nanoparticle Hy-

bridization

Our new bioorthogonal chemistry-based cellnanoparticle hybridization approach in-

volves two steps: 1) metabolic incorporation of azido sugars into the cell surface

with peracetylated N -azidoacetylmannosamine (Ac4ManNAz, 50 × 10−6 M ) for

48 h, and 2) copper-free click reaction on the cell surface in the presence of click-

able dendrimers (Figure 7.2). Different from our previous approach using anionic

carboxylate-terminated PAMAM dendrimer [92], we used cationic amine-terminated

PAMAM dendrimer G4.0 as a model to investigate the hybridization efficiency and to

explore the adaptability of dendrimers used for cell-dendrimer hybridization because

both types of PAMAM dendrimers have been commonly utilized in drug and gene

delivery applications [337, 207, 238, 146, 112, 320, 319]. To this end, a different syn-

thetic route has been developed to apply bioorthogonal chemistry for cell-nanoparticle

hybridization. In particular, succinimidyl ester DIBO alkyne (DIBO) was coupled to

amine-terminated PAMAM dendrimer G4.0 to make clickable dendrimers. The re-

sultant G4.0-DIBO conjugates were further labeled with FITC to allow fluorescent

imaging for localization of nanoparticles. Except for the untreated cells (control), the

other three groups were incubated with equimolar amounts of FITC.
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Figure 7.2: Schematic for hybridization of PAMAM dendrimer and
macrophage through bioorthogonal chemistry.

As expected, untreated RAW cells lack the fluorescent label, whereas RAW

cells treated with FITC show uniform distribution of fluorescence inside the cell due

to nonspecific uptake ( Figure 7.3a). FITC labeled PAMAM dendrimer G4.0 was

found to be taken up more prominently by RAW-N3 cells and accumulated primar-

ily in the cytoplasm. This observation was attributed to a high density of cationic

charges on the dendrimer surface responsible for promoting nonspecific cellular up-

take of FITC-labeled dendrimer. There was no obvious accumulation of dendrimers

on the cell surface. Although RAW-N3 cells present azide groups on the surface,

the click reaction did not take place because the dendrimer did not possess com-

plementarily reactive alkynes on the surface. In contrast, a significant increase in

fluorescence intensity was observed on the surface of the RAW-N3 cells following in-

cubation with G4.0(FITC)-DIBO, indicating successful hybridization of dendrimer

nanoparticles with the cell surface (Figure 7.3b). Significant reduction in uptake of

the nanoparticles into the cell reaffirms the efficiency of bioorthogonal chemistry.

It is critical to ensure that RAW cells are minimally affected by the hybridiza-

tion process. Therefore, cell morphology was monitored throughout the process. No

abnormal morphological cell changes were observed. Some RAW-DEN cells under-

going mitosis were observed, suggesting a normal cell cycle. Detailed examination of
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Figure 7.3: Hybridization of PAMAM dendrimer and macrophage through
bioorthogonal chemistry and confirmation by confocal microscopy.
a) Colocalization assay of FITC-labeled G4.0 (green) with nuclei (blue) by confocal
microscopy following different surface treatments. b) Quantitative analysis of cell
fluorescence intensities using ImageJ. c) Representative confocal images of a single
RAW-DEN cell. (Original magnification: 630×.)
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Figure 7.4: Cell viability of RAW cells following various treatments as
determined by WST-1 cell proliferation assay following the manufacturer’s
protocol.
The relative cell viability was normalized with respect to the viability of the control
group. The data are expressed as mean ± SD. No statistically significant difference
was noted for comparisons between subgroups.

single hybrid cells (Figure 7.3c) clearly illustrates that the fluorescence is mainly lo-

calized on the cell surface as opposed to in the cytoplasm for those dendrimer particles

uptaken by cells via endocytosis [183]. The heterogeneity of a dendrimer-immobilized

cell surface reflects the distribution of azide groups that were metabolically integrated

into the cell surface. RAW cells maintained good viability throughout the process, as

shown in Figure 7.4. The doses of azido sugar and dendrimers used in the hybridiza-

tion process had negligible toxicity effects on the cells.
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7.4.2 Intracellular Signaling Pathways in the Hybrid Cell Ve-

hicles

Cells utilize signaling pathways to regulate their biological functions as well as their

interactions with the microenvironment. Common stress-activated signaling path-

ways include nuclear factor (NF)κB (p65), p38 mitogen-activated protein kinases

(MAPKs), and AKT. In this work, we primarily examined whether or not these sig-

naling pathways had been altered by the hybridization process. As judged by Western

blot analysis, expression levels of AKT, p65, and p38 in RAW cells were similar before

and after 48 h culture in the presence of Ac 4 ManNAz at various concentrations up

to 50 × 10−6 M ( Figure 7.5a,b). The levels of the phosphorylated forms of these key

signaling molecules were also unchanged, indicating that azido sugar likely had not

altered the signaling pathways involving AKT, p65, and p38. Consistent with the

cytotoxicity assay, azido sugar is biocompatible with RAW cells.

The second step in the cell-nanoparticle hybridization process is to anchor poly-

cationic PAMAM dendrimers at the cell surface. Inherent phagocytosis of macrophages

and the cationic surface of dendrimers would be expected to enable entry of den-

drimers into the cell, although bioorthogonal chemistry employed in this work has

greatly reduced inadvertent dendrimer uptake by RAW cells. PAMAM dendrimers

show doseand generation-dependent toxicity [307, 309]. The dendrimer concentra-

tions used for cell-nanoparticle hybridization did not cause a decrease in cell viability.

However, the effects of amine-terminated PAMAM dendrimers on intracellular signal-

ing pathways are unknown. Therefore, we evaluated intracellular AKT, p65, and p38

signaling pathways in RAW cells following 10-min treatment of PAMAM dendrimer

G4.0 at various concentrations up to 100 × 10−3 M.

The Western blot results showed that the acute exposure of PAMAM den-

drimer G4.0 to RAW cells did not alter intracellular p65 and p38 signaling pathways

(Figure 7.5c,d), indicating that no acute stress in RAW cells was induced by PAMAM

dendrimer G4.0. Furthermore, normal activation of intracellular AKT was preserved

although there was a minimal decrease in AKT and p-AKT levels, suggesting that
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Figure 7.5: Biological effects of azido sugar and PAMAM dendrimers on
intracellular signaling pathways in RAW cells during the hybridization
process.
Western blot analysis and quantitative densitometry of signaling molecules AKT,
p65 (NFκB), p38 MAPK, and their corresponding phosphorylated forms: a,b) in
RAW cells treated with Ac4ManNAz for 48 h at the indicated concentrations and
c,d) in RAW cells treated with PAMAM dendrimer G4.0 for 10 min at the indicated
concentrations.
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the macrophages were able to survive and retain proliferative capacity, consistent

with the results of viability assays. These observations are also consistent with the

previous reports that dendrimers are biocompatible at relatively low concentrations

and over a short exposure time [50, 108].

7.4.3 Assessment of Cell Motility

RAW cells are adherent cells. Assessment of their migration speed allows one to

evaluate whether the bioorthogonal reaction at the cell surface causes loss of cell

motility. To this end, we performed a 2D wound closure assay. We first introduced

a “wound” by denuding confluent monolayers of RAW cells with a pipette tip, and

determined their motility over 20 h ( Figure 7.6a). As summarized in Figure 7.6b,

untreated RAW cells migrated at a mean rate of 7.2 µm h−1. The mean migration

rates were 6.3 and 6.9 µm h−1 for RAW-N3 and RAW-DEN hybrids, respectively.

No significant difference was observed between the control group and the surface-

modified RAW cells. These results confirm that surface modification of macrophages

via copper free click chemistry does not reduce cell motility.

7.5 Discussion

There are many advantages about nanoparticle-based anticancer drug delivery. The

composition, shape, size, charge, and morphology of nanoparticles can be finely

tuned to achieve some desirable pharmacokinetic and pharmacodynamic profiles for a

drug such as prolonged release, reduced systemic toxicity, and tumor-specific efficacy

[71, 60, 139]. However, this approach has two major limitations. First, because of

heterogeneities of vascular permeability and the complex microenvironment of cancer

biology, delivery of drug-carrying nanoparticles even including those decorated with

tumor-specific ligand relies heavily on passive mechanisms such as the enhanced per-

meability and retention (EPR) effect. Second, only a small percentage of the injected

drug can fi nally accumulate in the tumor with the aid of nanoparticles, in large part,
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Figure 7.6: Wound closure assay to assess the motility of RAW cells fol-
lowing different treatments.
a) After RAW cells 100% confluence, the cell monolayer was denuded. The distance
across the denuded area was measured at 0 h and at 20 h (original magnification:
50×). b) Motility is presented as mean ± SD ( n = 18). Data are representative of
experiments conducted on three independent occasions.
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due to rapid clearance by immune cells in the liver and spleen, which is commonly

known as the mononuclear phagocytic system (MPS). Immune cells including T cells

and macrophages have been explored as drug carriers for cancer therapy because

of their endogenous cancer-targeting or -attacking abilities. Unfortunately, loading

therapeutic components into the cell via phagocytosis is the primary means for drug

delivery [21, 77, 202, 35]. Covalently conjugating drug-loaded particles to the sur-

face of immune cell such as T cell has emerged as an appealing method for cancer

immunotherapy [247]. The highly localized drug on the cell surface can continuously

and directly exert pseudoautocrine stimulation of transferred cells in vivo and avoid

its systemic toxicity [247]. Nonetheless, none of the approaches mentioned above is

applicable to cell-based anticancer drug delivery.

We proposed a new concept to take advantages of the best aspects of both types

for anticancer drug delivery. Using the macrophage surface to covalently deliver anti-

cancer drugs would prevent phagocytosis of those inherently toxic therapeutic agents,

thus avoiding significant loss of cell viability and functions such as motility. High pay-

loads of functional moieties such as drugs and fluorescent probes at cell surfaces can

be achieved by virtue of the high loading capacity of dendrimers [158, 53]. Although

various techniques have been developed to engineer cell surfaces [63, 244, 116, 23, 41],

coupling nanoparticles such as dendrimers [92] and lipid-coated PLGA nanoparticles

[247] to the cell surface represents a new way of utilizing cell surfaces, thus generat-

ing a great need to develop efficient chemistries for cell surface modifications to avoid

inadvertent particle uptake by the cell and minimize cell function loss. Recently, a

series of bioorthogonal reactions has been developed based on the Staudinger ligation

and SPAAC [240]. SPAAC reactions employ cyclooctynes to boost click reactions

in the absence of copper catalyst [37, 76, 110, 241], a source of toxicity in copper-

catalyzed alkyne-azide cycloaddition (CuAAC) due to production of copper-induced

reactive oxygen species (ROS) [240, 94]. Therefore, bioorthogonal chemistry, which

has been acclaimed as a safe and noninvasive method to probe molecules in cells and

live organisms [13, 43, 137, 138], has great potential for live cell surface modification

with dendrimers.
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An essential criterion for developing a clinically acceptable cell surface engi-

neering protocol is to maintain cell viability and functions [246]. We examined the bi-

ological functions of the cellular vehicle via analysis of several key signaling molecules

based on the following justification. p65 is a key mediator of inducible transcription

in the innate immune system. It plays a central role in regulating cellular responses

to a variety of stimuli, such as stress, cytokines, free radicals, ultraviolet irradiation,

inflammation, and infection [83]. p38 MAPKs are a class of mitogen-activated protein

kinases responding to stress stimuli, such as cytokines, ultraviolet irradiation, heat

shock, and osmotic shock, and also play important roles in cell differentiation, apop-

tosis, and immune response [38]. As reported, p38 can be rapidly phosphorylated

in response to lipopolysaccharide (LPS) stimulation, resulting in the production of

proinflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor-α

(TNF-α) [44]. AKT, also known as protein kinase B, is a serine/threonine-specific

protein kinase that is involved in metastatic pathways and survival signaling path-

ways. Activation of AKT kinase may cause cell detachment, proliferation, invasion,

angiogenesis, and protection against apoptosis [233].

We provided evidence to prove the proof-of-concept of click hybridizing macro-

phages with dendrimers and its noninvasiveness to the engineered cells [246]. It is

also important to evaluate cell surface stability of dendrimers following copper free

click chemistry and study potential effects of the factors including cell type, immobi-

lized molecules, and immobilization technique on the fate of cell surface-immobilized

moieties (i.e., dendrimers). In addition to these factors, dynamic intracellular den-

drimer distribution and additional parameters including particle size, surface charge,

particle geometry, cell type, cell membrane turnover, hybridization conditions (e.g.,

surface densities of azide and dendrimer concentrations) may affect dendrimer stabil-

ity. Those factors will be investigated systematically in future work to gain insight

into the cell surface engineering optimization for achieving targeted durability for

cell surface-immobilized dendrimers. Future work also includes in vivo validation of

macrophage homing following hybridization and assessment of therapeutic and di-

agnostic functions of the cell-dendrimer hybrids. Drugs or imaging probes can be
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covalently conjugated to or complexed with the dendrimer prior to cell-dendrimer

hybridization. The linkages between dendrimer and cell and the linkages between

drug/imaging probe and dendrimer can be engineered to be cleavable in response to

external stimuli such as pH or enzymes or be stable. We envision that the whole

hybrid system is modular and capable of controlled drug release using molecular en-

gineering approaches.

7.6 Conclusions

PAMAM dendrimer G4.0 was successfully immobilized to the RAW cell surface via

bioorthogonal chemistry and confirmed by confocal microscopy. Both azido sugar

and PAMAM dendrimer G4.0 are cytocompatible under the conditions used for cell-

nanoparticle hybridization. The viability, intracellular signaling pathways, and motil-

ity of RAW cells remained unaltered. Although internalization of nanoparticles by

macrophages seems to be an inevitable process because of their innate phagocytic

capability, the application of bioorthogonal chemistry provides an efficient noninva-

sive method for cell surface modification and hybridization with nanoparticles, and it

has greatly reduced the intracellular uptake of nanoparticles during the hybridization

process.
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Chapter 8

Summary and Future Directions

8.1 Summary

The background and significance of head and neck squamous cell carcinomas (HN-

SCC) have been reviewed in Chapter 1. HNSCC remains the sixth most prevalent

cancers in mankind, and presents high morbidity and low rates of survival in the US

[22]. Treatment of HNSCC frequently requires multi-modality intervention involving

surgical, medical, and radiation oncology. Because surgery may cause disfigurement,

concurrent chemotherapy and radiation is more patient compliant, but it also leads to

more severe toxicity. Currently, most chemotherapeutics are small-molecular-weight

drugs that target intracellular proteins, enzymes, and DNA. The anticancer drugs

that block DNA replication and cell division have severe side effects due to non-

specific uptake of normal cells. The anticancer drugs that target intracellular signal

intermediates develop acquired drug resistance. The anticancer gene therapy that

is precisely tailored to the gene structure of each tumor is obstructed from the cells

because of the nature of these materials [20]. Although discovery and development of

new cytotoxic agents for cancer chemotherapy remains a key focus, modification of

existing anticancer drugs to improve their specificity and potency is also an important

approach for anticancer chemotherapy.

Dendrimers possess numerous advantages including maintaining drug levels in

a therapeutically desirable range, increased half-lives, increased solubility, stability
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and permeability of drugs, capable to deliver a variety of drugs, reduced macrophage

uptake, targeting ability, facile passage across biological barriers by transcytosis, rapid

cellular entry, improved delivery efficiency, and reduced side effects by targeted de-

livery. All these advantages lead dendrimers to advance for anticancer drug delivery.

Besides, polycationic dendrimers, bearing primary amines on the surface, have been

shown great potential for gene transfection and cancer gene therapy, which have been

discussed in Chapter 2.

Literature documents that folate receptors (FRs) are highly expressed in nu-

merous cancers, including HNSCC, in order to meet the folate demand of rapidly

dividing cells under low folate conditions. In the last decade, numerous formulations

of FA-decorated nanoparticles have been developed for anticancer drug delivery and

diagnosis, which have been reviewed in Chapter 3. Therefore, our aim was to engineer

a folate acid (FA)-decorated dendrimer for HNSCC gene delivery and potential gene

therapy. We chose HN12 cells as our model cell line because HN12 cells were derived

from a primary synchronous lymph node metastasis that is a clinically relevant HN-

SCC cell line. In Chapter 4, a FA-conjugated polyamidoamine (PAMAM) dendrimer

generation 4 (G4-FA) conjugate was successfully synthesized. Fluorescein isothio-

cyanate (FITC) was conjugated onto G4-FA conjugate for in vitro trafficking. G4-FA

conjugate or G4 dendrimer was complexed with plasmid to form G4-FA/plasmid

and G4/plasmid polyplexes. Our results strongly indicate that G4-FA conjugate and

G4-FA/plasmid polyplex are taken up by HN12 cells through receptor-mediated endo-

cytosis; whereas G4 dendrimer and G4/plasmid polyplex are taken up by HN12 cells

through absorptive-mediated endocytosis triggered by electrostatic interaction. Be-

cause of the different cellular uptake mechanisms, G4-FA/plasmid polyplex displayed

targeting capability, increased cytocompatibility, and enhanced transfection efficiency

in HN12 cell, compared with G4/polyplex. In Chapter 5, near infrared fluorescence

dye (NIR) was conjugated onto G4-FA conjugate for biodistribution imaging. G4-FA

conjugate or G4 dendrimer was complexed with siRNA against vascular endothelial

growth factor (siVEGFA) to form G4-FA/siVEGFA and G4/siVEGFA polyplexes.

Our results showed that NIR-G4-FA and NIR-G4 conjugates could retain in the tu-
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mor region at least 21 days after intratumoral (i.t.) administration in the HN12

tumor-bearing mice. However, NIR-G4-FA conjugate exhibited higher tumor uptake

than NIR-G4 conjugate. Single-dose i.t. injection of G4-FA/siVEGFA polyplexes

delayed tumor growth rate by 4 day, and two-dose intratumoral (i.t.) injection of

G4-FA/siVEGFA polyplexes significantly inhibited tumor growth, by lowering angio-

genesis in the tumor microenvironment, in HN12 tumor-bearing mice.

Besides gene transfection and gene delivery, we also explored the potential of

using dendrimers for anticancer drug delivery. In Chapter 6, a new camptothecin

(CPT)-carrying anionic PAMAM dendrimer generation 4.5 (G4.5) drug delivery sys-

tem was designed for anticancer chemotherapy. Click chemistry was employed in this

approach to improve polymer-drug coupling reaction efficiency. CPT was conjugated

onto a PEGylated G4.5 dendrimer to form a CPT-G4.5-PEG conjugate via an ester

linkage, which allows a controlled release. Our results showed the IC50 of CPT-G4.5-

PEG conjugate increased 185 folds in comparison to that of free CPT as a result of

slow release. The released CPT could induce an arrest in G2/M of cell cycle, which

leads to apoptosis in HN12 cells.

Macrophages actively infiltrate the tumor mass in response to tumor invasion,

recurrence, and metastasis or tumor hypoxia. In chapter 7, we hybridized macrophage

with PAMAM dendrimer generation 4, as a potential alternative strategy for an-

ticancer drug and gene delivery. The macrophage-dendrimer hybrids were formed

based on bioorthogonal reaction, referred to as strain-promoted azide-alkyne cycload-

dition. Our results strongly indicate dendrimer can be successfully immobilized onto

macrophage surface, which has no impact on the intracellular signaling, such as AKT,

p65, and p38, cell viability, and cell motility.
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8.2 Discussion

8.2.1 G4-FA conjugate formulation for targeted gene deliv-

ery

In Chapter 4 and 5, we engineered a simplest PAMAM dendrimer-FA conjugates by

direct coupling. We have shown a consistent successful synthesis and purification of

G4-FA conjugates from batch to batch. From in vitro gene transfection aspect, G4-FA

conjugates possess high cytocompatibility and excellent gene transfection efficiency

in FR-positive cells. Although dendrimers have been extensively investigated for gene

delivery, it is interesting to compare our findings to the others. It has been reported

that surface modification of PAMAM dendrimers with triazine [282], hyaluronic acid

(HA) [266], fluorobenzoic acid (FBA) [275], RRRK peptide from mouse fibroblast

growth factor 3 [141], aminoglycoside (paromomycin and neomycin) [68], lysine (Lys)

[278], arginine (Arg), phenylalanine (Phe), and histidine (His) [270] all showed an

increased cytocompatibility and enhanced transfection efficiency in vitro. Triazine

is a capable of binding DNA through complementary hydrogen bonds [282]. HA is

a ubiquitous glycosaminoglycan (GAG) found in the extracellular matrix. HA is to

interact electrostatically, shield surface charge, function as a targeting agent, improve

biodistribution, and lower cytotoxicity [266]. Fluorinated molecules tend to assemble

into a hydrophobic and lipophobic fluorous phase which can improve cellular uptake

and endosomal escape [275]. RRRK peptide is to induce nuclear localization [141].

Aminoglycosides is to enhance cellular uptake due to their natural affinity for nucleic

acids [68]. Lys is to enhance the electrostatic interaction with DNA molecules [278].

Arg is to stabilize complexes, Phe is to improve cellular uptake efficacy, and His is to

increase buffering capacity and minimizes cytotoxicity of the cationic dendrimer [270].

Most of these approaches were aimed to employ positive charged natural materials

to enhance cytocompatibility of PAMAM dendrimer without compromising electro-

static interaction with genetic materials. These approaches showed great potentials

in general gene transfection compared to commercial available transfection reagents,
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but they do not possess targeting capability. Our previous work showed that epider-

mal growth factor (EGF) conjugated PAMAM dendrimer G4 via a triglycine spacer

can enhance gene transfection efficiency without activating epidermal growth factor

receptor (EGFR) signaling. This approach is aimed to enhance cellular uptake by tar-

geting EGFR in EGFR-overexpressing cells. Similarly, our current approach is aimed

to enhance cellular uptake by targeting FR in FR-overexpressing cell, such as cancer

cells. The co-culture experiment strongly indicates G4-FA/plasmid conjugates can be

selectively and preferentially taken up in FR-positive cells. The cytocompatibility of

G4-FA/plasmid polyplexes can be significantly improved by limiting uptake of poly-

plexes from saturating FR on the cell membrane. All these formulations showed great

potential for in vitro gene transfection, but the transfection mechanism of G4-FA con-

jugates is different from those of surface modified dendrimers mentioned above. Any

combination of these approaches may be interesting for future investigation.

From our literature search, most FR-targeting dendrimer delivery systems are

investigated to actively deliver small molecular weight drugs and contrast agents, such

as methotrexate [128, 180, 331], paclitaxel [169, 26], doxorubicin [186, 325], camp-

tothecin [58, 258], fluorescence resonance energy transfer (FRET)-based substrates

[181], but very few are designed for gene delivery. Both G3-PEG-FA conjugated

with -cyclodextrin (Fol-PC) and FA-PEG-chitosan complexed with G4 (FPCPHD)

nanoparticles were developed to enhance gene transfection in vitro and gene delivery

in vivo [7, 276]. Plasmid pRL-CMV-Luc vector encoding Renilla luciferase and plas-

mid pDsRed-M-N1 vector encoding red fluorescence protein were employed in either

of these two investigations. Noteworthy is that Fol-PC and FPCPHD can significantly

enhance gene transfection in the tumor after i.t. and i.v. administration, respectively,

in the KB tumor-bearing mice. Compared to these two formulations, FA-decorated

dendrimer-based formulations for in vivo siRNA delivery has not been investigated.

Although DNA plasmid and siRNA possess similar the number of phosphate and zeta

potential per each base pair, but their geometry and size are significantly different.

Plasmid is a circular, double-stranded DNA molecule; whereas siRNA is a linear,

double-stranded RNA molecule. The size of a plasmid varies from 1,000 to 20,000
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base pairs; whereas the size of an siRNA is 20-25 base pairs in length. This significant

difference in size can impact on the shape of resultant dendrimer/gene polyplexes,

which may further influence on cellular uptake and transfection efficiency. To this

end, a comprehensive evaluation is needed to justify this assumption. Our current in-

vestigation shows that G4-FA conjugates can enhance gene silencing efficiency in vitro

and siRNA delivery in vivo (Chapter 5). To further validate the FR-targeted gene

delivery of our G4-FA formulation, we can complex G4-FA conjugates with plasmid

vector encoding luciferase or fluorescence protein to form G4-FA/pDNA polyplexes,

and evaluate the reporter gene expression in the tumor after i.t. administration in

HN12 tumor-bearing mice. In addition, we can complex G4-FA conjugates with a

plasmid encoding small heparin (sh)RNA against VEGFA (shVEGFA), and evaluate

the therapeutic outcome after i.t. administration in HN12 tumor-bearing mice. By

comparing the therapeutic outcome of G4-FA/siVEGFA and G4-FA/shVEGFA poly-

plexes, we may determine the G4-FA conjugate formulation is suitable for siRNA or

DNA plasmid delivery.

On the other hand, our preliminary results indicate G4-FA conjugate formu-

lation is not suitable for i.v. administration, because the rapid uptake and clearance

from liver, kidney, and spleen. It has been reported that lower generation dendrimer

are subjected to rapid renal clearance and surface charged (cationic and anionic) or

hydrophobic dendrimers are subjected to rapid hepatic clearance [50]. PEGylation

can prolong circulation time, allow for tumor-targeting, and minimize non-specific up-

take from liver, kidney, and spleen [267]. However, PEGylation may compromise the

buffering capacity and stability of dendrimer/gene polyplexes. Our previous study

showed incorporation of a bis-aryl hydrazine (BAH) linkage can compensate the loss

of primary amine from PEGylation, increase the buffering capacity, and stabilize

dendrimer/gene complaxation [321]. Indeed, we are interested to explore G4-BAH-

PEG-FA conjugate formulation for in vivo siRNA delivery through systemic admin-

istration.

Biocompatibility is always a safety concern for drug delivery systems. To date,

very few toxicological investigations of dendrimers and their derivatives have been re-
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ported. Acute administration (single-dose) and long-term administration (repeatedly

once a week for 10 weeks) of 2.6, 10, and 45 mg/kg of PAMAM dendrimer G3 and G5

showed no behavioral changes, weight loss, or immunogenicity [220]. In our current

work, single local injection of G4/siVEGFA polyplexes at a G4-concentration of 9.3

mg/kg showed no weight loss, but two local injections of G4/siVEGFA polyplexes

at a G4-concentration of 9.3 mg/kg showed a weight loss and skin lesion, indicating

a skin damage and potential local toxicity occurred after second injection. A large

amount of G4/siVEGFA polyplexes might accumulate in the tumor and surrounding

areas without entering circulation because of the local injection. G4/siVEGFA poly-

plexes can trigger rapid non-specific cellular uptake by absorptive endocytosis, which

may cause the toxicity to the skin. In contrast, both single and two local injections of

G4-FA/siVEGFA and G4-FA/siGFP polyplexes showed no weight loss. Our proposed

mechanism is that the cellular uptake of G4-FA conjugate is via FR-mediate endo-

cytosis, which is highly dependent on the FR availability on the cell surface. Due to

the lack of FR in the surrounding tissues such as skin, G4-FA/siVEGFA polyplexes

were preferentially taken up by HN12 xenograft tumor; while FR of the tumor again

limited the amount of G4-FA/siVEGFA polyplexes uptake. Therefore, G4-FA/siRNA

polyplexes displayed no toxicity to the HN12 tumor-bearing mice. However, further

studies of multiple-dose injection are needed to verify our mechanism.

8.2.2 Challenges in siRNA delivery

siRNA may serve as a promising therapeutic molecule for treating human diseases

such as cancer. Generally, the most serious obstacle to siRNA therapeutic develop-

ment perhaps is the delivery. However, two recent studies illustrate other barriers

that likely occur at the point of internalization (Figure 8.1) [283]. Gilleron et al.

showed only 1-2% of internalized siRNA could escape from the endocytic system

(Figure 8.1) [69]. Sahay et al. showed LNPs were internalized by macropinocytosis

and trafficked directly into late endosomes. However, those dissociated siRNA was

exocytosed, as a result of overall 70% siRNA loss after 24 h treatment (Figure 8.1)

[224]. Together, both studies indicate endosomal escape and exocytosis need to be
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considered in design of siRNA delivery system. In our current study, we determined

the cellular uptake kinetics of plasmid which labeled with Cy3 fluorescence dye by

flow cytometry and fluorescence microscopy. The results indicate G4-FA/plasmid

polyplexes can be gradually taken up and the exocytosis of the polyplexes can be

minor in 24 h, as the evidence shown Cy3 fluorescence increased in a time-dependent

manner. In the co-localization assessment based on confocal microscopy, we found

most of G4-FA conjugates were co-locolized with plasmid after 24 h treatment. This

result indicates that dissociation of plasmid from polyplex may not be efficient for our

formulation. Although most of the polyplexes were close to nucleus within the cell,

it remains unknown where are the polyplexes located, late endosome, lysosome, or

somewhere else. Further cellular component co-locolization investigations are needed

to justify when and how the plasmid and polyplexes can escape from the endosome

or lysosome. On the other hand, the intracellular response of siRNA and plasmid is

different due to their different the biological and physicochemical properties. Plas-

mid needs to enter nucleus and integrate into host chromosomal target sites. siRNA

needs to bind to its complementary messenger RNA and induce degradation of the

passenger strand by incorporating into the RNA-induced silencing complex (RISC) in

the cytosol. Therefore, the in vitro trafficking of G4-FA/plasmid polyplexes may not

represent that for G4-FA/siRNA. Thus, a Cy3-labeled siRNA is needed to demon-

strate the cellular uptake and intracellular trafficking of siRNA delivered by G4-FA

conjugates. More importantly, we need to answer three fundamental questions: 1)

whether or not the G4-FA/siRNA polyplex can escape from endosome, late endosome,

or lysosome; 2) where the siRNA can be released from the polyplex; and 3) whether

the released siRNA can retain in the cytosol or undergo exocytosis.

8.2.3 In vivo xenograft model

The in vivo xenograft tumor model used in this work is an HN12 tumor-bearing

nude mouse model. Athymic nude mice are immunodeficient, particularly T-cell de-

ficient, which allows for xenograft tumor. Athymic nude mice in turn become an
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Figure 8.1: Schematic illustration of the approach used to study the up-
take and intracellular trafficking of siRNA delivered by lipid nanoparticles
(LNPs).
The major difference between these two LNPs is in the cationic lipids used to formu-
late the LNP that delivered the siRNA. (Reproduced reference [283]. Copyright 2013
Macmillan Publishers Ltd.)
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excellent in vivo model for transplantation and tumor cell growth. However, it may

not be an ideal in vivo model to investigate drug delivery systems. Those chemother-

apeutics that target DNA or multicomponent machineries of cancer cells can cause

substantial toxicity because they can affect both cancer and normal cells. This type

of chemotherapeutics can compromise the rapidly dividing cells of immune system

(hematopoiesis), gut, hair, and also the function of post-mitotic tissue such as heart

muscle and peripheral nerves [46]. Thus, the patient receiving this type of chemother-

apy will experience hair loss and infections (due to compromised immune system) and

peripheral nerve pain. Because athymic nude mice are immunodeficient, it becomes

difficult to evaluate the immune response after therapeutics-carried nanoparticles ad-

ministration in the xenograft tumor model. Particularly, the immune system first

responses therapeutics-carried nanoparticles once they enter circulation. Due to the

T-cell deficiency, the effect of therapeutics-carried nanoparticles on T-cells remains

unknown after therapeutics-carried nanoparticles administration in the xenograft tu-

mor model, which may affect cell-mediated immunity of the body. On the other hand,

these athymic nude mice may be an ideal in vivo model to investigate our immune

cell-dendrimer hybrids. Because of the immunodeficiency, xenogeneic immune cells,

such as monocytes, can be systemically injected to the tumor-bearing mice. These

hybrids are cell-based vehicles, which can minimize non-specific uptake from liver,

kidney, and immune system itself. It would be very interesting to further investigate

the biodistribution of monocyte-dendrimer hybrids after i.v. administration.

8.3 Future Directions

8.3.1 Local delivery of highly potent genetic materials using

G4-FA conjugates

In Chapter 5, we addressed the potency of the siVEGFA duplex used in our work

might not be very high in HN12 cells. To enhance silencing efficacy, we can select

an siVEGFA pool against VEGFA for G4-FA complexation. Besides siVEGFA, we
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can employ an siRNA pool targeting to multiple intracellular signaling intermediates,

which are oncoproteins, to improve the therapeutic outcomes. Among these signal-

ing intermediates, epidermal growth factor receptor pathway substrate 8 (EPS8) is

one of our interest targeting signaling intermediates. EPS8 plays an important role

in HNSCC. Our early report has shown that overexpression of EPS8 activates AKT

in a PI3K-dependent manner, leading to an increase mRNA expression of matrix

metalloproteinase-9 (MMP9). This enhanced MMP-9 activity facilitates extracellu-

lar matrix degradation, thereby enhancing cell invasion [272]. In addition, our recent

report has shown EPS8 enhances cell proliferation, migration and tumorigenicity in

vitro and in vivo. A microarray screen identified EPS8 upregulates multiple cell cycle-

related targets such as the transcription factor FOXM1 and several of its reported

downstream mediators, including cdc20, cyclin B1, cyclin A, aurora-B kinase, cdc25C

and MMP9 [273]. Thus, EPS8 knockdown represents a novel approach for gene ther-

apy of HNSCC. In addition to siRNA delivery, we can complex G4-FA conjugates with

plasmid encoding suicide genes, such as tumor necrosis factor (TNF), TNF-related

apoptosis-inducing ligand (TRAIL), caspase-9, caspase-9, and B-cell lymphoma 2

(Bcl-2)-interacting killer (Bik), for cancer gene therapy. Overexpression of these sui-

cide genes in cancer cells can trigger apoptosis in cancer cells, potentially leading to

tumor regression.

8.3.2 Systemic gene delivery using PEGylated G4-FA conju-

gates

In Chapter 5, our results showed FA-conjugated G4 dendrimer failed to enhance tu-

mor uptake through i.v. administration. A rapid hepatic and renal clearance was

observed, indicating G4-FA conjugates possess a short circulation time. To prolong

the circulation time, we can partially surface modify G4 dendrimer with PEG via a

bis-aryl hydrazine (BAH) linkage and then conjugate FA onto the surface modified

G4 dendrimer to form G4-BAH-PEG-FA conjugates (Figure 8.2). Incorporation of

BAH linkage can help to compensate the loss of amine from PEGylation, which in
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turn enhances the buffering capacity of dendrimer conjugates for gene delivery. We

can conjugate Cy5 fluorescence dye onto dendrimer conjugates for in vitro trafficking

and in vivo bioimaging. Therefore, our hypothesis is that G4-BAH-PEG-FA/siRNA

polyplexes may prolong the circulation, increase tumor accumulation, and lead to

an enhanced therapeutic outcome compared to G4-FA/siRNA polyplexes, in HN12

tumor-bearing nude mice after i.v. administration. The key rationale of this approach

is to engineering a versatile dendrimer-based gene delivery system for tumor-targeted

delivery of gene therapeutics, including siRNA, shRNA, plasmid, and any combina-

tion.

8.3.3 Synthesize FA-conjugated CPT-G4.5-PEG conjugates

for targeted chemotherapy

In Chapter 6, we have shown a slow release of CPT from CPT-G4.5-PEG conjugates in

U2142 cells. To further explore this formulation via click chemistry in the treatment

of HNSCC, we can further couple FA onto CPT-G4.5-PEG conjugate, yielding a

CPT-G4.5-PEG-FA conjugates (Figure 8.3). With understanding of cellular uptake

mechanism, we expect to observe more therapeutic outcomes from CPT-G4.5-PEG-

FA conjugates than CPT-G4.5-PEG conjugates in vitro in HN12 cells and in vivo

in HN12 tumor-bearing mice. Additionally, we also want to investigate the effect of

PEGylation of dendrimer on administration routes in this approach. In Chapter 5, we

have clearly demonstrated non-PEGylated G4-FA conjugates can retain in the tumor

region for at least 21 day after i.t. administration. However, G4-FA conjugates failed

to accumulate in the tumor after systemic administration, mainly due to the rapid

clearance by liver and kidney. Therefore, our hypothesis is that G4.5-PEG conjugates

may prolong the circulation compared to G4-FA conjugates; G4.5-PEG-FA conjugates

may increase tumor accumulation compared to G4.5-PEG; and CPT-G4.5-PEG-FA

conjugates may lead to an enhanced therapeutic outcome compared to CPT-G4.5-

PEG and free CPT, in HN12 tumor-bearing nude mice after i.v. administration. The

key rationale of this approach is to apply click chemistry to increase the coupling
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Figure 8.2: Synthesis of Cy5-G4-BAH-PEG-FA conjugates
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efficiency in the dendrimer-based drug delivery system.

8.3.4 In vivo evaluation of monocyte-dendrimer hybrids

In Chapter 7, we have shown PAMAM dendrimer G4 can be successfully immobilized

onto macrophage to form hybrids. Next step is to evaluate the biodistribution of

these hybrids in the tumor-bearing mice. Our novel bioorthogonal chemistry-based

cell-nanoparticle hybridization approach is proposed in Figure 8.4. First, we need to

determine the stability of these hybrids in order to obtain an in vivo delivery time

window. To improve the hybrid stability, we can partially conjugate PEG onto poly-

cationic PAMAM dendrimer generation 4 (G4), which can neutralize zeta potential

of G4, to minimize the uptake of dendrimer from the electrostatic interaction. Sec-

ond, we can label the G4-PEG with Cy5 fluorescence dye (Cy5). Cy5 possesses high

signal-to-noise ratio, which allows bioimaging, and it has a characteristic maximum

absorption wavelength at 650 nm, which is within the UV detector range of our HPLC

instrument. The purity of the resultant Cy5-G4-PEG conjugates can be determined

by HPLC and 1H NMR. Third, monocytes, such as THP-1 monocytes, are suspending

cells, which is more feasible for i.v. administration. Thus, we can hybrid monocytes

with Cy5-G4-PEG conjugates based on bioorthogonal reaction. The stability and the

biodistribution of these novel hybrids will be evaluated in vitro and in vivo in the

tumor-bearing nude mice, respectively. Lastly, it would be important to determine

drug loaded G4-PEG conjugates-monocyte hybrids. Doxorubicin (DOX) can be a

good drug candidate in this approach, because the autofluorescent DOX can allow in

vitro trafficking. The stability and anticancer efficiency can be evaluated in vitro and

in vivo in the tumor-bearing nude mice. The key rationale is to utilize immune cells

as vehicles to deliver therapeutics and imaging contrast agents to the tumor, which

may significantly reduce non-specific uptake from liver, kidney, spleen, and immune

system itself.

215



Figure 8.3: Synthesis of CPT-G4.5-PEG-FA conjugates
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Figure 8.4: Schematic for hybridization of PEGylated PAMAM dendrimer
and monocyte through bioorthogonal chemistry
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Designing dendrimers for biological applications. Nat Biotechnol, 23(12):1517–

1526, 2005.

[141] Jeil Lee, Jinwoo Jung, Youn-Joong Kim, Eunji Lee, and Joon Sig Choi. Gene

delivery of pamam dendrimer conjugated with the nuclear localization signal

peptide originated from fibroblast growth factor 3. Int J Pharm, 459(1):10–18,

2014.

236



[142] Kyung Dong Lee, Seon-Hee Choi, Da Hye Kim, Hye-Young Lee, and Ki-

Choon Choi. Self-organized nanoparticles based on chitosan-folic acid and dex-

tran succinate-doxorubicin conjugates for drug targeting. Arch Pharm Res,

37(12):1546–1553, 2014.

[143] Sangmin Lee, Heebeom Koo, Jin Hee Na, Kyung Eun Lee, Seo Young Jeong,

Kuiwon Choi, Sun Hwa Kim, Ick Chan Kwon, and Kwangmeyung Kim. Dna

amplification in neutral liposomes for safe and efficient gene delivery. ACS

Nano, 8(5):4257–4267, 2014.

[144] Bokai Lei, Weibin Zha, Yun Wang, Cong Wen, Elaine J Studer, Xuan Wang,

Fang Jin, Guangji Wang, Luyong Zhang, and Huiping Zhou. Development

of a novel self-microemulsifying drug delivery system for reducing hiv pro-

tease inhibitor-induced intestinal epithelial barrier dysfunction. Mol Pharm,

7(3):844–853, 2010.

[145] Maciej S Lesniak and Henry Brem. Targeted therapy for brain tumours. Nat

Rev Drug Discov, 3(6):499–508, 2004.

[146] Wojciech G Lesniak, Manoj K Mishra, Amar Jyoti, Bindu Balakrishnan, Fan

Zhang, Elizabeth Nance, Roberto Romero, Sujatha Kannan, and Rangaramanu-

jam M Kannan. Biodistribution of fluorescently labeled pamam dendrimers in

neonatal rabbits: Effect of neuroinflammation. Mol Pharm, 10(12):4560–4571,

2013.

[147] Jin-Ming Li, Yuan-Yuan Wang, Wei Zhang, Hua Su, Liang-Nian Ji, and

Zong-Wan Mao. Low-weight polyethylenimine cross-linked 2-hydroxypopyl-β-

cyclodextrin and folic acid as an efficient and nontoxic sirna carrier for gene

silencing and tumor inhibition by vegf sirna. Int J Nanomedicine, 8:2101, 2013.

[148] Jin-Ming Li, Mei-Xia Zhao, Hua Su, Yuan-Yuan Wang, Cai-Ping Tan, Liang-

Nian Ji, and Zong-Wan Mao. Multifunctional quantum-dot-based sirna delivery

for hpv18 e6 gene silence and intracellular imaging. Biomaterials, 32(31):7978–

7987, 2011.

237



[149] Tony Shing Chau Li, Toshio Yawata, and Koichi Honke. Efficient sirna deliv-

ery and tumor accumulation mediated by ionically cross-linked folic acid–poly

(ethylene glycol)–chitosan oligosaccharide lactate nanoparticles: For the poten-

tial targeted ovarian cancer gene therapy. Eur J Pharm Sci, 52:48–61, 2014.

[150] Yan Li, Hai He, Xinru Jia, Wan-Liang Lu, Jinning Lou, and Yen Wei. A dual-

targeting nanocarrier based on poly (amidoamine) dendrimers conjugated with

transferrin and tamoxifen for treating brain gliomas. Biomaterials, 33(15):3899–

3908, 2012.

[151] Xuhua Liang, Yang Sun, Wenyuan Zeng, Lusha Liu, Xuan Ma, Yingyong Zhao,

and Jun Fan. Synthesis and biological evaluation of a folate-targeted rhaponticin

conjugate. Bioorg Med Chem, 21(1):178–185, 2013.

[152] Yong-beom Lim, Seon-mi Kim, Hearan Suh, and Jong-sang Park. Biodegrad-

able, endosome disruptive, and cationic network-type polymer as a highly effi-

cient and nontoxic gene delivery carrier. Bioconjug Chem, 13(5):952–957, 2002.

[153] Guimei Lin, Hong Zhang, and Leaf Huang. Smart polymeric nanoparticles for

cancer gene delivery. Mol Pharm, 2014.

[154] Cheng Liu, Xiaoxuan Liu, Palma Rocchi, Fanqi Qu, Juan L Iovanna, and

Ling Peng. Arginine-terminated generation 4 pamam dendrimer as an effec-

tive nanovector for functional sirna delivery in vitro and in vivo. Bioconjug

Chem, 25(3):521–532, 2014.

[155] Jing-Min Liu, Jia-Tong Chen, and Xiu-Ping Yan. Near infrared fluorescent

trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer

biosensor and in vivo cancer imaging bioprobe. Anal Biochem, 85(6):3238–3245,

2013.

[156] Leroy F Liu. Dna topoisomerase poisons as antitumor drugs. Annu Rev

Biochem, 58(1):351–375, 1989.

238



[157] Leroy F Liu, Shyamal D Desai, Tsai-Kun Li, Yong Mao, Mei Sun, and Sai-Peng

Sim. Mechanism of action of camptothecin. Ann N Y Acad Sci, 922(1):1–10,

2000.
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