1,002 research outputs found

    Topology, connectivity and electronic structure of C and B cages and the corresponding nanotubes

    Full text link
    After a brief discussion of the structural trends which appear with increasing number of atoms in B cages, a one-to one correspondence between the connectivity of B cages and C cage structures will be proposed. The electronic level spectra of both systems from Hartree-Fock calculations is given and discussed. The relation of curvature introduced into an originally planar graphitic fragment to pentagonal 'defects' such as are present in buckminsterfullerene is also briefly treated. A study of the structure and electronic properties of B nanotubes will then be introduced. We start by presenting a solution of the free-electron network approach for a 'model boron' planar lattice with local coordination number 6. In particular the dispersion relation E(k) for the pi-electron bands, together with the corresponding electronic Density Of States (DOS), will be exhibited. This is then used within the zone folding scheme to obtain information about the electronic DOS of different nanotubes obtained by folding this model boron sheet. To obtain the self-consistent potential in which the valence electrons move in a nanotube, 'the March model' in its original form was invoked and results are reported for a carbon nanotube. Finally, heterostructures, such as BN cages and fluorinated buckminsterfullerene, will be briefly treated, the new feature here being electronegativity difference.Comment: 22 pages (revtex4) 12 figure

    Influence of air diffusion on the OH radicals and atomic O distribution in an atmospheric Ar (bio)plasma jet

    Get PDF
    Treatment of samples with plasmas in biomedical applications often occurs in ambient air. Admixing air into the discharge region may severely affect the formation and destruction of the generated oxidative species. Little is known about the effects of air diffusion on the spatial distribution of OH radicals and O atoms in the afterglow of atmospheric-pressure plasma jets. In our work, these effects are investigated by performing and comparing measurements in ambient air with measurements in a controlled argon atmosphere without the admixture of air, for an argon plasma jet. The spatial distribution of OH is detected by means of laser-induced fluorescence diagnostics (LIF), whereas two-photon laser-induced fluorescence (TALIF) is used for the detection of atomic O. The spatially resolved OH LIF and O TALIF show that, due to the air admixture effects, the reactive species are only concentrated in the vicinity of the central streamline of the afterglow of the jet, with a characteristic discharge diameter of similar to 1.5 mm. It is shown that air diffusion has a key role in the recombination loss mechanisms of OH radicals and atomic O especially in the far afterglow region, starting up to similar to 4mm from the nozzle outlet at a low water/oxygen concentration. Furthermore, air diffusion enhances OH and O production in the core of the plasma. The higher density of active species in the discharge in ambient air is likely due to a higher electron density and a more effective electron impact dissociation of H2O and O-2 caused by the increasing electrical field, when the discharge is operated in ambient air

    Hospital discharge information after elective total hip or knee joint replacement surgery: A clinical audit of preferences among general practitioners

    Get PDF
    The demand for elective joint replacement (EJR) surgery for degenerative joint disease continues to rise in Australia, and relative to earlier practices, patients are discharged back to the care of their general practitioner (GP) and other community-based providers after a shorter hospital stay and potentially greater post-operative acuity. In order to coordinate safe and effective post-operative care, GPs rely on accurate, timely and clinically-informative information from hospitals when their patients are discharged. The aim of this project was to undertake an audit with GPs regarding their preferences about the components of information provided in discharge summaries for patients undergoing EJR surgery for the hip or knee. GPs in a defined catchment area were invited to respond to an online audit instrument, developed by an interdisciplinary group of clinicians with knowledge of orthopaedic surgery practices. The 15-item instrument required respondents to rank the importance of components of discharge information developed by the clinician working group, using a three-point rating scale.Fifty-three GPs and nine GP registrars responded to the audit invitation (11.0% response rate). All discharge information options were ranked as ‘essential’ by a proportion of respondents, ranging from 14.8–88.5%. Essential information requested by the respondents included early post-operative actions required by the GP, medications prescribed, post-operative complications encountered and noting of any allergies. Non-essential information related to the prosthesis used. The provision of clinical guidelines was largely rated as ‘useful’ information (47.5–56.7%). GPs require a range of clinical information to safely and effectively care for their patients after discharge from hospital for EJR surgery. Implementation of changes to processes used to create discharge summaries will require engagement and collaboration between clinical staff, hospital administrators and information technology staff, supported in parallel by education provided to junior medical staff

    Logics of marginalisation in health and social care reform:integration, choice, and provider-blind provision

    Get PDF
    The period 2010–2013 was a time of far-reaching structural reforms of the National Health Service in England. Of particular interest in this paper is the way in which radical critiques of the reform process were marginalised by pragmatic concerns about how to maintain the market-competition thrust of the reforms while avoiding potential fragmentation. We draw on the Essex school of political discourse theory and develop a ‘nodal’ analytical framework to argue that widespread and repeated appeals to a narrative of choice-based integrated care served to take the fragmentation ‘sting’ out of radical critiques of the pro-competition reform process. This served to marginalise alternative visions of health and social care, and to pre-empt the contestation of a key norm in the provision of health care that is closely associated with the notions of ‘any willing provider’ and ‘any qualified provider’: provider-blind provision

    Human Intestinal Organoids and Microphysiological Systems for Modeling Radiotoxicity and Assessing Radioprotective Agents

    Get PDF
    Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients’ quality of life

    Plasma-laser assisted synthesis of nanoparticles for antibacterial coatings

    Get PDF
    The “green synthesis” of colloidal nanoparticles and their application for the antibacterial coatings is based on the plasma-laser assisted ablation in liquids. Nanoparticles are synthesized through the process of laser ablation of target in water, which enables additional advantages in comparison with the other standard wet chemical synthesis, such as simplicity and complete utilization of materials. Furthermore, these nanoparticles are used and tested for antibacterial coatings on polymers, where they are grafted or imbedded through atmospheric pressure plasma assisted processes. The advantages of different coatings made from those nanoparticles are presented as well.Plasmatexinfo:eu-repo/semantics/publishedVersio

    A microbial platform for renewable propane synthesis based on a fermentative butanol pathway

    Get PDF
    Background Propane (C3H8) is a volatile hydrocarbon with highly favourable physicochemical properties as a fuel, in addition to existing global markets and infrastructure for storage, distribution and utilization in a wide range of applications. Consequently, propane is an attractive target product in research aimed at developing new renewable alternatives to complement currently used petroleum-derived fuels. This study focuses on the construction and evaluation of alternative microbial biosynthetic pathways for the production of renewable propane. The new pathways utilize CoA intermediates that are derived from clostridial-like fermentative butanol pathways and are therefore distinct from the first microbial propane pathways recently engineered in Escherichia coli. Results We report the assembly and evaluation of four different synthetic pathways for the production of propane and butanol, designated a) atoB-adhE2 route, b) atoB-TPC7 route, c) nphT7-adhE2 route and d) nphT7-TPC7 route. The highest butanol titres were achieved with the atoB-adhE2 (473 ± 3 mg/L) and atoB-TPC7 (163 ± 2 mg/L) routes. When aldehyde deformylating oxygenase (ADO) was co-expressed with these pathways, the engineered hosts also produced propane. The atoB-TPC7-ADO pathway was the most effective in producing propane (220 ± 3 μg/L). By (i) deleting competing pathways, (ii) including a previously designed ADOA134F variant with an enhanced specificity towards short-chain substrates and (iii) including a ferredoxin-based electron supply system, the propane titre was increased (3.40 ± 0.19 mg/L). Conclusions This study expands the metabolic toolbox for renewable propane production and provides new insight and understanding for the development of next-generation biofuel platforms. In developing an alternative CoA-dependent fermentative butanol pathway, which includes an engineered ADO variant (ADOA134F), the study addresses known limitations, including the low bio-availability of butyraldehyde precursors and poor activity of ADO with butyraldehyde
    corecore