21 research outputs found

    Nerve Root Reimplantation in Brachial Plexus Injuries

    Get PDF
    Nerve root avulsion is the most severe form of brachial or lumbosacral plexus injury. Spontaneous recovery is extremely rare, and when all the nerve roots of the affected plexus are avulsed, the therapeutic options are very limited. Nerve root reimplantation has been attempted since the 1990s, first in experimental animal models and afterwards in human beings. Currently, only partial recovery of the proximal limb muscles has been achieved. New therapeutic strategies have been developed to improve motor neuron survival and axonal regeneration, with promising results. Neurotrophic factors and some drugs have been used successfully to improve the regenerating ability, but long-term studies in humans are needed to develop complete recovery of the affected limb

    Chronic Headache and Neuromodulation

    Get PDF
    The immense majority of patients with chronic headaches can be controlled with medical treatments. However, there is a subset of them with poor response, and it is for those patients that new therapeutic strategies are being designed. Neuromodulation has been used for chronic pain management in many areas for the past 50 years. The application of these techniques to the treatment of the most refractory chronic headache disorders has offered hope to these patients. There is a large variety of different techniques, each of them particularly suitable to specific types of chronic headaches. The surgically implanted devices are still in use in some particularly recalcitrant cases. Nevertheless, new percutaneous devices allow new treatment strategies. Percutaneous devices do not always show the same effectivity as surgically implanted stimulating devices, but they are user-friendly and have no serious adverse effects. Thus, they are becoming the treatment of choice once the pharmacological means are no longer effective. In case of failure, the surgical procedures would still be available as a last resort

    Where We Come From and Are We Aware of Where We Are Going To?

    Get PDF
    Chronic pain is a pathological condition that requests specific medical attention. Its treatment has been imperative since the origin of our species, taking advantage of herbs and natural remedies available in the primitive environment. Morphine has stood the test of time as has been continuously used for the past 8 millennia. The anatomical knowledge of the nociceptive sensation pathways led to the introduction of some surgical techniques directed to stop this pain transmission. Due to their aggressiveness and to the fact that they are irreversible, these techniques were soon replaced by neurostimulation procedures. Being reversible and allowing a change in stimulation parameters soon became the preferred treatment strategy. Over the years a small subset of patients continues to suffer from chronic pain refractory to the usual neurostimulation and pain-controlling medications. These patients can perhaps benefit from one of the surgical ablative procedures. Some of these techniques have been proven particularly effective throughout the years. For some limited income patients in underdeveloped countries, these techniques may be their only accessible option. Doctors have to keep in mind these surgical techniques to put them at the service of our patients in the very few cases in which they are needed. Letting these ablative techniques to die in oblivion would be a disservice to our patients

    Chronic Pain Associated with Lateral Epicondylitis: Treatment with Radiofrequency

    Get PDF
    Lateral epicondylitis is a painful condition that impairs the quality of life and the working capacities of many middle-aged people. Conservative treatments offer an opportunity for improvement in the majority of cases. Surgical alternatives can be considered in those patients with persisting pain. Open, arthroscopic and percutaneous extensor tendon procedures offer similar results with 10–20% failure rates. Radiofrequency microtenotomies have been introduced with comparable results to traditional surgical procedures. Although both thermal and pulsed radiofrequency techniques have been applied, there is more experience with the thermal. In the past, thermal radiofrequency has been applied through a 3–5 cm skin incision, but now some researchers have reported its percutaneous application with radiofrequency cannulas. The results are similar to former techniques but with significantly reduced surgical aggressiveness that correlates with less postoperative discomfort and a faster recovery

    Surgical Treatment of Moyamoya Disease

    Get PDF
    Moyamoya disease is a rare cerebrovascular disease most prevalent in East Asian Countries. Thanks to the new diagnostic capabilities, the number of cases discovered has been rising steadily in the latest years, including many asymptomatic patients. But asymptomatic from the clinical point of view does not necessarily mean that there are no subjacent problems and that there will be no disease progression. Indeed, many patients harbour cognitive decline long before they start with clinical or even radiological manifestations. The only effective treatment is surgical revascularization, with all its possibilities: direct, indirect, and combined. While direct techniques are more useful in adult moyamoya patients, children seem to benefit most from indirect techniques. Additionally, indirect or combined procedures can be used as salvage procedures in case of unsatisfactory outcomes. Thus, many surgeons posit that surgical treatment should be considered in moyamoya patients, even if asymptomatic, particularly in the paediatric age group

    Bionate biocompatibility: in vivo study in rabbits

    Get PDF
    Response to foreign materials includes local tissue reaction, osteolysis, implant loosening, and migration to lymph nodes and organs. Bionate 80A human explants show minor wear and slight local tissue reaction, but we do not know the response at the spinal cord, nerve roots, lymph nodes, or distant organs. This study aims to figure out reactions against Bionate 80A when implanted at the spinal epidural space of 24 20-week-old New Zealand white rabbits. In one group of 12 rabbits, we implanted Bionate 80A on the spinal epidural space, and another group of 12 rabbits was used as the control group. We studied tissues, organs, and tissue damage markers on blood biochemistry, urine tests, and necropsy. The animals' clinical parameters and weight showed no statistically significant differences. At 3 months, the basophils increased slightly in the implant group, platelets decreased in all, and at 6 months, implanted animals showed slight eosinophilia, but none of these changes was statistically significant. External, organ, and spinal tissue examination showed neither toxic reaction, inflammatory changes, or noticeable differences between groups or survival periods. Under microscopic examination, the Bionate 80A particles induced a chronic granulomatous response always outside the dura mater, with giant multinucleated cells holding phagocytized particles and no particle migration to lymph nodes or organs. Thus, it was concluded that Bionate particles, when implanted in the rabbit lumbar epidural space, do not generate a significant reaction limited to the surrounding soft tissues with giant multinucleated cells. In addition, the particles did not cross the dura mater or migrate to lymph nodes or organs

    Finite Element Analysis of a Bionate Ring-Shaped Customized Lumbar Disc Nucleus Prosthesis

    Get PDF
    [EN] Study design: Biomechanical study of a nucleus replacement with a finite element model. Objective: To validate a Bionate 80A ring-shaped nucleus replacement. Methods: The ANSYS lumbar spine model made from lumbar spine X-rays and magnetic resonance images obtained from cadaveric spine specimens were used. All materials were assumed homogeneous, isotropic, and linearly elastic. We studied three options: intact spine, nucleotomy, and nucleus implant. Two loading conditions were evaluated at L-3-L-4, L-4-L-5, and L-5-S-1 discs: a 1000 N axial compression load and this load after the addition of 8 Nm flexion moment in the sagittal plane plus 8 Nm axial rotation torque. Results: Maximum nucleus implant axial compression stresses in the range of 16-34 MPa and tensile stress in the range of 5-16 MPa, below Bionate 80A resistance were obtained. Therefore, there is little risk of permanent implant deformation or severe damage under normal loading conditions. Nucleotomy increased segment mobility, zygapophyseal joint and end plate pressures, and annulus stresses and strains. All these parameters were restored satisfactorily by nucleus replacement but never reached the intact status. In addition, annulus stresses and strains were lower with the nucleus implant than in the intact spine under axial compression and higher under complex loading conditions. Conclusions: Under normal loading conditions, there is a negligible risk of nucleus replacement, permanent deformation or severe damage. Nucleotomy increased segmental mobility, zygapophyseal joint pressures, and annulus stresses and strains. Nucleus replacement restored segmental mobility and zygapophyseal joint pressures close to the intact spine. End plate pressures were similar for the intact and nucleus implant conditions under both loading modes. Manufacturing customized nucleus implants is considered feasible, as satisfactory biomechanical performance is confirmed.This project received funding from the European Union's 6th Framework Programme under project number IP 026599-s.Vanaclocha-Saiz, A.; Vanaclocha, V.; Atienza Vicente, CM.; Clavel, P.; Jorda-Gomez, P.; Barrios, C.; Vanaclocha, L. (2022). Finite Element Analysis of a Bionate Ring-Shaped Customized Lumbar Disc Nucleus Prosthesis. ACS Applied Bio Materials. 5(1):172-182. https://doi.org/10.1021/acsabm.1c01027S1721825

    ICR in human cadaveric specimens: An essential parameter to consider in a new lumbar disc prosthesis design

    Get PDF
    [EN] Study design Biomechanical study in cadaveric specimens. Background The commercially available lumbar disc prostheses do not reproduce the intact disc's Instantaneous centre of Rotation (ICR), thus inducing an overload on adjacent anatomical structures, promoting secondary degeneration. Aim To examine biomechanical testing of cadaveric lumbar spine specimens in order to evaluate and define the ICR of intact lumbar discs. Material and Methods Twelve cold preserved fresh human cadaveric lumbosacral spine specimens were subjected to computerized tomography (CT), magnetic resonance imaging (MRI) and biomechanical testing. Kinematic studies were performed to analyse range of movements in order to determine ICR. Results Flexoextension and lateral bending tests showed a positive linear correlation between the angle rotated and the displacement of the ICR in different axes. Discussion ICR has not been taken into account in any of the available literature regarding lumbar disc prosthesis. Considering our results, neither the actual ball-and-socket nor the withdrawn elastomeric nucleus models fit the biomechanics of the lumbar spine, which could at least in part explain the failure rates of the implants in terms of postoperative failed back syndrome (low back pain). It is reasonable to consider then that an implant should also adapt the equations of the movement of the intact ICR of the joint to the post-surgical ICR. Conclusions This is the first cadaveric study on the ICR of the human lumbar spine. We have shown that it is feasible to calculate and consider this parameter in order to design future prosthesis with improved clinical and biomechanical characteristics.Vanaclocha-Saiz, A.; Atienza Vicente, CM.; Vanaclocha, V.; Belloch, V.; Santabarbara, JM.; Jordá-Gómez, P.; Vanaclocha, L. (2020). ICR in human cadaveric specimens: An essential parameter to consider in a new lumbar disc prosthesis design. North American Spine Society Journal. 2:1-8. https://doi.org/10.1016/j.xnsj.2020.100016S18

    Barbed Dental Ti6Al4V Alloy Screw : Design and Bench Testing

    Get PDF
    Background context. Dental implants are designed to replace a missing tooth. Implant stability is vital to achieving osseointegration and successful implantation. Although there are many implants available on the market, there is room for improvement. Purpose. We describe a new dental implant with improved primary stability features. Study design. Lab bench test studies. Methods. We evaluated the new implant using static and flexion-compression fatigue tests with compression loads, 35 Ncm tightening torque, displacement control, 0.01 mm/s actuator movement speed, and 9-10 Hz load application frequency, obtaining a cyclic load diagram. We applied variable cyclic loadings of predetermined amplitude and recorded the number of cycles until failure. The test ended with implant failure (breakage or permanent deformation) or reaching five million cycles for each load. Results. Mean stiffness was 1151.13 ± 133.62 SD N/mm, mean elastic limit force 463.94 ± 75.03 SD N, and displacement 0.52 ± 0.04 SD mm, at failure force 663.21 ± 54.23 SD N and displacement 1.56 ± 0.18 SD mm, fatigue load limit 132.6 ± 10.4 N, and maximum bending moment 729.3 ± 69.43 mm/N. Conclusions. The implant fatigue limit is satisfactory for incisor and canine teeth and between the values for premolars and molars for healthy patients. The system exceeds five million cycles when subjected to a 132.60 N load, ensuring long-lasting life against loads below the fatigue limit
    corecore