9 research outputs found

    Direct Photolithography on Molecular Crystals for High Performance Organic Optoelectronic Devices

    Get PDF
    Organic crystals are generated via the bottom-up self-assembly of molecular building blocks which are held together through weak noncovalent interactions. Although they revealed extraordinary charge transport characteristics, their labile nature represents a major drawback toward their integration in optoelectronic devices when the use of sophisticated patterning techniques is required. Here we have devised a radically new method to enable the use of photolithography directly on molecular crystals, with a spatial resolution below 300 nm, thereby allowing the precise wiring up of multiple crystals on demand. Two archetypal organic crystals, i.e., p-type 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (Dph-BTBT) nanoflakes and n-type N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) nanowires, have been exploited as active materials to realize high-performance top-contact organic field-effect transistors (OFETs), inverter and p–n heterojunction photovoltaic devices supported on plastic substrate. The compatibility of our direct photolithography technique with organic molecular crystals is key for exploiting the full potential of organic electronics for sophisticated large-area devices and logic circuitries, thus paving the way toward novel applications in plastic (opto)electronics

    Controlling Ambipolar Transport and Voltage Inversion in Solution-Processed Thin-Film Devices through Polymer Blending

    Get PDF
    Ambipolar semiconductors are attracting a great interest as building blocks for photovoltaics and logic applications. Field-effect transistors built on solution-processable ambipolar materials hold strong promise for the engineering of large-area low-cost logic circuits with a reduced number of devices components. Such devices still suffer from a number of obstacles including the challenging processing, the low Ion/Ioff, the unbalanced mobility, and the low gain in complementary metal–oxide–semiconductor (CMOS)-like circuits. Here, we demonstrate that the simple approach of blending commercially available n- and p-type polymers such as P(NDI2OD-T2), P3HT, PCD-TPT, PDVT-8, and IIDDT-C3 can yield high-performing ambipolar field-effect transistors with balanced mobilities and Ion/Ioff > 10^7. Each single component was studied separately and upon blending by means of electrical characterization, ambient ultraviolet photoelectron spectroscopy, atomic force microscopy, and grazing incidence wide angle X-ray scattering to unravel the correlation between the morphology/structure of the semiconducting films and their functions. Blends of n- and p-type semiconductors were used to fabricate CMOS-like inverter circuits with state-of-the-art gains over 160 in the case of P(NDI2OD-T2) blended with PDVT-8. Significantly, our blending approach was successful in producing semiconducting films with balanced mobilities for each of the four tested semiconductor blends, although the films displayed different structural and morphological features. Our strategy, which relies on establishing a correlation between ambipolar performances, film morphology, molecular structure, and blending ratio, is extremely efficient and versatile; thus it could be applied to a wide range of polymers or solution processable small molecules

    Graphene exfoliation in the presence of semiconducting polymers for improved film homogeneity and electrical performances

    Get PDF
    We report on the production of hybrid graphene/semiconducting polymer films in one step procedure by making use of ultrasound-assisted liquid-phase exfoliation of graphite powder in the presence of π-conjugated polymers, i.e. poly(3-hexylthiophene) (P3HT) or poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo-[3,4-c]pyridine] (PCDTPT). The polymers were chosen in view of their different propensity to form crystalline structures, their decoration with alkyl chains that are known to possess high affinity for the basal plane of graphene, the energy levels of their frontier orbitals which are extremely similar to the work function of graphene, and their high electrical performance when integrated in field-effect transistors (FETs). The polymers act as a dispersion-stabilizing agent and prevent the re-aggregation of the exfoliated graphene flakes, ultimately enabling the production of homogeneous bi-component dispersions. The electrical characterization of few-layer graphene/PCDTPT hybrids, when integrated as active layer in bottom-contact bottom-gate FETs, revealed an increase of the field-effect mobility compared to the π-conjugated-based pristine devices, a result which can be attributed to the joint effect of the few-layer graphene sheets and semiconducting polymers improving the charge-transport in the channel of the field-effect transistor. In particular, few-layer graphene/PCDTPT films displayed a 30-fold increase of PCDTPT's mobility if compared to pristine polymer samples. Such findings represent a step forward towards the optimization of graphene exfoliation and processing into electronic devices, as well as towards improved electrical performance in organic-based field-effect transistors

    Morphology and Electronic Properties of Electrochemically Exfoliated Graphene

    Get PDF
    Electrochemically exfoliated graphene (EEG) possesses optical and electronic properties that are markedly different from those of the more explored graphene oxide in both its pristine and reduced forms. EEG also holds a unique advantage compared to other graphenes produced by exfoliation in liquid media: it can be obtained in large quantities in a short time. However, an in-depth understanding of the structure–properties relationship of this material is still lacking. In this work, we report physicochemical characterization of EEG combined with an investigation of the electronic properties of this material carried out both at the single flake level and on the films. Additionally, we use for the first time microwave irradiation to reduce the EEG and demonstrate that the oxygen functionalities are not the bottleneck for charge transport in EEG, which is rather hindered by the presence of structural defects within the basal plane

    Improving the electrical performance of solution processed oligothiophene thin-film transistors via structural similarity blending

    Get PDF
    Here we show that the blending of structurally similar oligothiophene molecules is an effective approach to improve the field-effect mobility and Ion/Ioff as compared to single component based transistors. The effect of addition of each component is studied extensively using a wide array of methods such as X-ray diffraction, ToF-SIMS, and ambient UPS correlated with the electrical characterization

    Covalently linked donor–acceptor dyad for efficient single material organic solar cells

    No full text
    A novel covalently linked donor–acceptor dyad comprising a dithienopyrrol-based oligomeric donor and a fullerene acceptor was synthesized and characterized. The concomitant effect of favorable optoelectronic properties, energy levels of the frontier orbitals, and ambipolar charge transport enabled the application of the dyad in simplified solution-processed single material organic solar cells reaching a power conversion efficiency of 3.4%

    Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend

    No full text
    Organic nanomaterials are attracting a great deal of interest for use in flexible electronic applications such as logic circuits, displays and solar cells. These technologies have already demonstrated good performances, but flexible organic memories are yet to deliver on all their promise in terms of volatility, operational voltage, write/erase speed, as well as the number of distinct attainable levels. Here, we report a multilevel non-volatile flexible optical memory thin-film transistor based on a blend of a reference polymer semiconductor, namely poly(3-hexylthiophene), and a photochromic diarylethene, switched with ultraviolet and green light irradiation. A three-terminal device featuring over 256 (8 bit storage) distinct current levels was fabricated, the memory states of which could be switched with 3 ns laser pulses. We also report robustness over 70 write–erase cycles and non-volatility exceeding 500 days. The device was implemented on a flexible polyethylene terephthalate substrate, validating the concept for integration into wearable electronics and smart nanodevices

    Phototuning Selectively Hole and Electron Transport in Optically Switchable Ambipolar Transistors

    No full text
    One of the grand challenges in organic electronics is to develop multicomponent materials wherein each component imparts a different and independently addressable property to the hybrid system. In this way, the combination of the pristine properties of each component is not only preserved but also combined with unprecedented properties emerging from the mutual interaction between the components. Here for the first time, that tri‐component materials comprised of an ambipolar diketopyrrolopyrrole‐based semiconducting polymer combined with two different photochromic diarylethene molecules possessing ad hoc energy levels can be used to develop organic field‐effect transistors, in which the transport of both, holes and electrons, can be photo‐modulated. A fully reversible light‐switching process is demonstrated, with a light‐controlled 100‐fold modulation of p‐type charge transport and a tenfold modulation of n‐type charge transport. These findings pave the way for photo‐tunable inverters and ultimately for completely re‐addressable high‐performance circuits comprising optical storage units and ambipolar field‐effect transistors
    corecore