1,135 research outputs found

    Whole egg consumption and cortical bone in healthy children

    Get PDF
    Eggs contain bioactive compounds thought to benefit pediatric bone. This cross-sectional study shows a positive link between childhood egg intake and radius cortical bone. If randomized trials confirm our findings, incorporating eggs into children's diets could have a significant impact in preventing childhood fractures and reducing the risk of osteoporosis. INTRODUCTION: This study examined the relationships between egg consumption and cortical bone in children. METHODS: The cross-sectional study design included 294 9-13-year-old black and white males and females. Three-day diet records determined daily egg consumption. Peripheral quantitative computed tomography measured radius and tibia cortical bone. Body composition and biomarkers of bone turnover were assessed using dual-energy X-ray absorptiometry and ELISA, respectively. RESULTS: Egg intake was positively correlated with radius and tibia cortical bone mineral content (Ct.BMC), total bone area, cortical area, cortical thickness, periosteal circumference, and polar strength strain index in unadjusted models (r = 0.144-0.224, all P < 0.050). After adjusting for differences in race, sex, maturation, fat-free soft tissue mass (FFST), and protein intakes, tibia relationships were nullified; however, egg intake remained positively correlated with radius Ct.BMC (r = 0.138, P = 0.031). Egg intake positively correlated with total body bone mineral density, BMC, and bone area in the unadjusted models only (r = 0.119-0.224; all P < 0.050). After adjusting for covariates, egg intake was a positive predictor of radius FFST (β = 0.113, P < 0.050) and FFST was a positive predictor of Ct.BMC (β = 0.556, P < 0.050) in path analyses. There was a direct influence of egg on radius Ct.BMC (β = 0.099, P = 0.035), even after adjusting for the mediator, FFST (β = 0.137, P = 0.020). Egg intake was positively correlated with osteocalcin in both the unadjusted (P = 0.005) and adjusted (P = 0.049) models. CONCLUSION: If the positive influence of eggs on Ct.BMC observed in this study is confirmed through future randomized controlled trials, whole eggs may represent a viable strategy to promote pediatric bone development and prevent fractures

    PDGF is a potent initiator of bone formation in a tissue engineered model of pathological ossification

    Get PDF
    Heterotopic ossification (HO) is a debilitating condition defined by the rapid formation of bone in soft tissues. What makes HO fascinating is firstly the rate at which bone is deposited, and secondly the fact that this bone is structurally and compositionally similar to that of a healthy adult. If the mechanisms governing HO are understood, they have the potential to be exploited for the development of potent osteoinductive therapies. With this aim, we utilised a tissue engineered skeletal muscle model to better understand the role of inflammation on this debilitating phenomenon. We showed myoblasts could be divided into two distinct populations, myogenic cells and undifferentiated "reserve" cells. Gene expression analysis of myogenic and osteo-regulatory markers confirmed that "reserve" cells were primed for osteogenic differentiation, but had a reduced capacity for myogenesis. Osteogenic differentiation was significantly enhanced in the presence of PDGF-BB and BMP2, and correlated with conversion to a Sca-1(+) /CD73(+) phenotype. Alizarin red staining showed that PDGF-BB promoted significantly more mineral deposition than BMP2. Finally, we showed that PDGF-induced mineralisation was blocked in the presence of the pro-inflammatory cytokines TNFα and IL1. In conclusion, the present study identified that PDGF-BB is a potent osteoinductive factor in a model of tissue engineered skeletal muscle, and that the osteogenic capacity of this protein was modulated in the presence of pro-inflammatory cytokines. These findings reveal a possible mechanism by which HO develops following trauma. Importantly, these findings have implications for the induction and control of bone formation for regenerative medicine

    Lateral epicondylitis in general practice: Course and prognostic indicators of outcome

    Get PDF
    Objective. To investigate the course of lateral epicondylitis and identify prognostic indicators associated with short- and longterm outcome of pain intensity. Methods. We prospectively followed patients (n = 349) from 2 randomized controlled trials investigating conservative interventions for lateral epicondylitis in primary care. Uni- and multivariate linear regression analyses were used to investigate the association between potential prognostic indicators and pain intensity (0-100 point scale) measured at 1,6, and 12 months after randomization. Potential prognostic factors were duration of elbow complaints, concomitant neck pain, concomitant shoulder pain, previous elbow complaints, baseline pain scores, age, gender, involvement of dominant side, social class, and work status. The variables "study" and "treatment" were included as covariates in all models. Results. Pain scores at 1 month followup were higher in patients with severe pain, a long duration of elbow complaints, and concomitant shoulder pain. At 12 month followup, the only different prognostic indicator for poor outcome was concomitant neck pain, in place of shoulder pain. Patients from higher social classes reported lower pain scores at 12 month followup than patients from lower social classes. Conclusions. Lateral epicondylitis seems to be a self-limiting condition in most patients. Long duration of elbow complaints, concomitant neck pain, and severe pain at presentation are associated with poor outcome at 12 months. Our results will help care providers give patients accurate information regarding their prognosis and assist in medical decision-making

    Identifying the cellular mechanisms leading to heterotopic ossification

    Get PDF
    Heterotopic ossification (HO) is a debilitating condition defined by the de novo development of bone within non-osseous soft tissues, and can be either hereditary or acquired. The hereditary condition, fibrodysplasia ossificans progressiva is rare but life threatening. Acquired HO is more common and results from a severe trauma that produces an environment conducive for the formation of ectopic endochondral bone. Despite continued efforts to identify the cellular and molecular events that lead to HO, the mechanisms of pathogenesis remain elusive. It has been proposed that the formation of ectopic bone requires an osteochondrogenic cell type, the presence of inductive agent(s) and a permissive local environment. To date several lineage-tracing studies have identified potential contributory populations. However, difficulties identifying cells in vivo based on the limitations of phenotypic markers, along with the absence of established in vitro HO models have made the results difficult to interpret. The purpose of this review is to critically evaluate current literature within the field in an attempt identify the cellular mechanisms required for ectopic bone formation. The major aim is to collate all current data on cell populations that have been shown to possess an osteochondrogenic potential and identify environmental conditions that may contribute to a permissive local environment. This review outlines the pathology of endochondral ossification, which is important for the development of potential HO therapies and to further our understanding of the mechanisms governing bone formation

    Defining the balance between regeneration and pathological ossification in skeletal muscle

    Get PDF
    Heterotopic ossification (HO) is characterised by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient’s range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues

    Defining the balance between regeneration and pathological ossification in skeletal muscle

    Get PDF
    Heterotopic ossification (HO) is characterised by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient’s range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues

    Annexin-enriched osteoblast-derived vesicles act as an extracellular site of mineral nucleation within developing stem cell cultures

    Get PDF
    The application of extracellular vesicles (EVs) as natural delivery vehicles capable of enhancing tissue regeneration could represent an exciting new phase in medicine. We sought to define the capacity of EVs derived from mineralising osteoblasts (MO-EVs) to induce mineralisation in mesenchymal stem cell (MSC) cultures and delineate the underlying biochemical mechanisms involved. Strikingly, we show that the addition of MO-EVs to MSC cultures significantly (P < 0.05) enhanced the expression of alkaline phosphatase, as well as the rate and volume of mineralisation beyond the current gold-standard, BMP-2. Intriguingly, these effects were only observed in the presence of an exogenous phosphate source. EVs derived from non-mineralising osteoblasts (NMO-EVs) were not found to enhance mineralisation beyond the control. Comparative label-free LC-MS/MS profiling of EVs indicated that enhanced mineralisation could be attributed to the delivery of bridging collagens, primarily associated with osteoblast communication, and other non-collagenous proteins to the developing extracellular matrix. In particular, EV-associated annexin calcium channelling proteins, which form a nucleational core with the phospholipid-rich membrane and support the formation of a pre-apatitic mineral phase, which was identified using infrared spectroscopy. These findings support the role of EVs as early sites of mineral nucleation and demonstrate their value for promoting hard tissue regeneration

    Measuring the Gaps in the Projected Image and Perceived Image of Rural Tourism Destinations in China’s Yangtze River Delta

    Get PDF
    Destination Marketing Organizations (DMOs) at all levels have an ultimate goal of building strong and positive images for their destinations. However, the projected image from the supply side is not necessarily the mirror of the perceived image from the demand side. This study adopted the content analysis method to evaluate the projected image and perceived image of rural destinations in China to see whether there is any discrepancy between and within the two categories. Comparative analysis of different information sources including web contents and on-site visitor interviews were processed. The evaluation of image congruency demonstrates that official websites focus more on cognitive image elements (knowledge and beliefs of the place). Besides promoting attractions, it provides information on geography background and promotes local culture. Business web content promotes attractions, package tour, and activities which can generate revenue. The perceived image includes more sentiment contents: on-site visitors expressed more negative attitude, but social media comments are relatively positive. Keywords: destination image; projected image; perceived image; content analysis; rural touris

    Genome-wide association study to identify genetic loci associated with gastrointestinal nematode resistance in Katahdin sheep

    Get PDF
    Resistance to gastrointestinal nematodes has previously been shown to be a moderately heritable trait in some breeds of sheep, but the mechanisms of resistance are not well understood. Selection for resistance currently relies upon faecal egg counts (FEC), blood packed cell volumes and FAMACHA visual indicator scores of anaemia. Identifying genomic markers associated with disease resistance would potentially improve the selection process and provide a more reliable means of classifying and understanding the biology behind resistant and susceptible sheep. A GWAS was conducted to identify possible genetic loci associated with resistance to Haemonchus contortus in Katahdin sheep. Forty animals were selected from the top and bottom 10% of estimated breeding values for FEC from a total pool of 641 sires and ram lambs. Samples were genotyped using Applied BiosystemsTM AxiomTM Ovine Genotyping Array (50K) consisting of 51 572 SNPs. Following quality control, 46 268 SNPs were included in subsequent analyses. Analyses were conducted using a linear regression model in PLINK v1.90 and a single-locus mixed model in SNP AND VARIATION SUITE. Genome-wide significance was determined by a Bonferroni correction for multiple testing. Using linear regression, loci on chromosomes 2, 3, 16, 23 and 24 were significantly associated at the genome level with FEC estimated breeding values, and we identified a region on chromosome 2 that was significant using both statistical analyses. We suggest a potential role for the gene DIS3L2 for gastrointestinal nematode resistance in Katahdin sheep, although further research is needed to validate these findings

    Variants Within Genes \u3ci\u3eEDIL3\u3c/i\u3e and \u3ci\u3eADGRB3\u3c/i\u3e are Associated With Divergent Fecal Egg Counts in Katahdin Sheep at Weaning

    Get PDF
    Gastrointestinal nematodes (GIN) pose a severe threat to sheep production worldwide. Anthelmintic drug resistance coupled with growing concern regarding potential environmental effects of drug use have demonstrated the necessity of implementing other methods of GIN control. The aim of this study was to test for genetic variants associated with resistance or susceptibility to GIN in Katahdin sheep to improve the current understanding of the genetic mechanisms responsible for host response to GIN. Linear regression and casecontrol genome-wide association studies were conducted with high-density genotype data and cube-root transformed weaning fecal egg counts (tFEC) of 583 Katahdin sheep. The casecontrol GWAS identified two significant SNPs (P-values 1.49e-08 to 1.01e-08) within introns of the gene adhesion G protein-coupled receptor B3 (ADGRB3) associated with lower fecal egg counts. With linear regression, four significant SNPs (P-values 7.82e-08 to 3.34e-08) were identified within the first intron of the gene EGF-like repeats and discoidin domains 3 (EDIL3). These identified SNPs were in very high linkage disequilibrium (r2 of 0.996–1), and animals with alternate homozygous genotypes had significantly higher median weaning tFEC phenotypes compared to all other genotypes. Significant SNPs were queried through public databases to identify putative transcription factor binding site (TFBS) and potential lncRNA differences between reference and alternate alleles. Changes in TFBS were predicted at two SNPs, and one significant SNPwas found to bewithin a predicted lncRNA sequencewith greater than 90% similarity to a known lncRNA in the bovine genome. The gene EDIL3 has been described in other species for its roles in the inhibition and resolution of inflammation. Potential changes of EDIL3 expression mediated through lncRNA expression and/or transcription factor binding may impact the overall immune response and reduce the ability of Katahdin sheep to control GIN infection. This study lays the foundation for further research of EDIL3 and ADGRB3 towards understanding genetic mechanisms of susceptibility to GIN, and suggests these SNPs may contribute to genetic strategies for improving parasite resistance traits in sheep
    • …
    corecore