69,074 research outputs found

    Aerospace engineers: We're tomorrow-minded people

    Get PDF
    Brief job-related autobiographical sketches of engineers working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the aerospace field

    Aerospace Technicians: We're Tomorrow-Minded People

    Get PDF
    Brief job-related autobiographical sketches of technicians working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the field of aerospace technology

    Skyrme and Wigner crystals in graphene

    Full text link
    At low-energy, the band structure of graphene can be approximated by two degenerate valleys (K,K)(K,K^{\prime}) about which the electronic spectra of the valence and conduction bands have linear dispersion relations. An electronic state in this band spectrum is a linear superposition of states from the AA and BB sublattices of the honeycomb lattice of graphene. In a quantizing magnetic field, the band spectrum is split into Landau levels with level N=0 having zero weight on the B(A)B(A) sublattice for the % K(K^{\prime}) valley. Treating the valley index as a pseudospin and assuming the real spins to be fully polarized, we compute the energy of Wigner and Skyrme crystals in the Hartree-Fock approximation. We show that Skyrme crystals have lower energy than Wigner crystals \textit{i.e.} crystals with no pseudospin texture in some range of filling factor ν\nu around integer fillings. The collective mode spectrum of the valley-skyrmion crystal has three linearly-dispersing Goldstone modes in addition to the usual phonon mode while a Wigner crystal has only one extra Goldstone mode with a quadratic dispersion. We comment on how these modes should be affected by disorder and how, in principle, a microwave absorption experiment could distinguish between Wigner and Skyrme crystals.Comment: 14 pages with 11 figure

    Physical constraints on the coefficients of Fourier expansions in cylindrical coordinates

    Get PDF
    It is demonstrated that (i) the postulate of infinite differentiability in Cartesian coordinates and (ii) the physical assumption of regularity on the axis of a cylindrical coordinate system provide significant simplifying constraints on the coefficients of Fourier expansions in cylindrical coordinates. These constraints are independent of any governing equations. The simplification can provide considerable practical benefit for the analysis (especially numerical) of actual physical problems. Of equal importance, these constraints demonstrate that if A is any arbitrary physical vector, then the only finite Fourier terms of A_r and A_θ are those with m=1 symmetry. In the Appendix, it is further shown that postulate (i) may be inferred from a more primitive assumption, namely, the arbitrariness of the location of the cylindrical axis of the coordinate system

    Effects of spatial ability on multi-robot control tasks

    Get PDF
    Working with large teams of robots is a very complex and demanding task for any operator and individual differences in spatial ability could significantly affect that performance. In the present study, we examine data from two earlier experiments to investigate the effects of ability for perspective-taking on performance at an urban search and rescue (USAR) task using a realistic simulation and alternate displays. We evaluated the participants' spatial ability using a standard measure of spatial orientation and examined the divergence of performance in accuracy and speed in locating victims, and perceived workload. Our findings show operators with higher spatial ability experienced less workload and marked victims more precisely. An interaction was found for the experimental image queue display for which participants with low spatial ability improved significantly in their accuracy in marking victims over the traditional streaming video display. Copyright 2011 by Human Factors and Ergonomics Society, Inc. All rights reserved

    Teams organization and performance analysis in autonomous human-robot teams

    Get PDF
    This paper proposes a theory of human control of robot teams based on considering how people coordinate across different task allocations. Our current work focuses on domains such as foraging in which robots perform largely independent tasks. The present study addresses the interaction between automation and organization of human teams in controlling large robot teams performing an Urban Search and Rescue (USAR) task. We identify three subtasks: perceptual search-visual search for victims, assistance-teleoperation to assist robot, and navigation-path planning and coordination. For the studies reported here, navigation was selected for automation because it involves weak dependencies among robots making it more complex and because it was shown in an earlier experiment to be the most difficult. This paper reports an extended analysis of the two conditions from a larger four condition study. In these two "shared pool" conditions Twenty four simulated robots were controlled by teams of 2 participants. Sixty paid participants (30 teams) were recruited to perform the shared pool tasks in which participants shared control of the 24 UGVs and viewed the same screens. Groups in the manual control condition issued waypoints to navigate their robots. In the autonomy condition robots generated their own waypoints using distributed path planning. We identify three self-organizing team strategies in the shared pool condition: joint control operators share full authority over robots, mixed control in which one operator takes primary control while the other acts as an assistant, and split control in which operators divide the robots with each controlling a sub-team. Automating path planning improved system performance. Effects of team organization favored operator teams who shared authority for the pool of robots. © 2010 ACM

    Intensity-Correlation Spectroscopy

    Get PDF
    A survey is given of techniques for spectroscopic analysis using intensity fluctuations. Particular attention is given to counting times, the role of macroscopic sources and detectors, and the electronic constraints placed on the observations

    Wildlife disease elimination and 1 density dependence

    Get PDF
    Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent transmission, is ineffective for controlling diseases that are subject to frequency-dependent transmission. We investigate control for horizontally transmitted diseases with frequency-dependent transmission where the control is via nonselective (for infected animals) culling or harvesting and the population can compensate through density-dependent recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are frequency-dependent. E 24 radication can be achieved under frequency-dependent transmission when density-dependent population regulation induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination and there is high enough transmission coefficient, application of both controls may be less efficient than when vaccination alone is used. We illustrate the effects of these control approaches on disease prevalence using assumed parameters for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment

    Space shuttle: Structural integrity and assessment study

    Get PDF
    A study program was conducted to determine the nondestructive evaluation (NDE) requirements and to develop a preliminary nondestructive evaluation manual for the entire space shuttle vehicle. The rationale and guidelines for structural analysis and NDE requirements development are discussed. Recommendations for development of NDE technology for the orbiter thermal protection system and certain structural components are included. Recommendations to accomplish additional goals toward space shuttle inspection are presented
    corecore