3,652 research outputs found

    Chemical studies of the passivation of GaAs surface recombination using sulfides and thiols

    Get PDF
    Steady-state photoluminescence, time-resolved photoluminescence, and x-ray photoelectron spectroscopy have been used to study the electrical and chemical properties of GaAs surfaces exposed to inorganic and organic sulfur donors. Despite a wide variation in S2–(aq) concentration, variation of the pH of aqueous HS–solutions had a small effect on the steady-state n-type GaAs photoluminescence intensity, with surfaces exposed to pH=8, 0.1-M HS–(aq) solutions displaying comparable luminescence intensity relative to those treated with pH=14, 1.0-M Na2S·9H2O(aq). Organic thiols (R-SH, where R=–CH2CH2SH or –C6H4Cl) dissolved in nonaqueous solvents were found to effect increases in steady-state luminescence yields and in time-resolved luminescence decay lifetimes of (100)-oriented GaAs. X-ray photoelectron spectroscopy showed that exposure of GaAs surfaces to these organic systems yielded thiols bound to the GaAs surface, but such exposure did not remove excess elemental As and did not form a detectable As2S3 overlayer on the GaAs. These results imply that complete removal of As0 or formation of monolayers of As2S3 is not necessary to effect a reduction in the recombination rate at etched GaAs surfaces. Other compounds that do not contain sulfur but that are strong Lewis bases, such as methoxide ion, also improved the GaAs steady-state photoluminescence intensity. These results demonstrate that a general class of electron-donating reagents can be used to reduce nonradiative recombination at GaAs surfaces, and also imply that prior models focusing on the formation of monolayer coverages of As2S3 and Ga2S3 are not adequate to describe the passivating behavior of this class of reagents. The time-resolved, high level injection experiments clearly demonstrate that a shift in the equilibrium surface Fermi-level energy is not sufficient to explain the luminescence intensity changes, and confirm that HS– and thiol-based reagents induce substantial reductions in the surface recombination velocity through a change in the GaAs surface state recombination rate

    Bridging the Semantic Gap in Multimedia Information Retrieval: Top-down and Bottom-up approaches

    No full text
    Semantic representation of multimedia information is vital for enabling the kind of multimedia search capabilities that professional searchers require. Manual annotation is often not possible because of the shear scale of the multimedia information that needs indexing. This paper explores the ways in which we are using both top-down, ontologically driven approaches and bottom-up, automatic-annotation approaches to provide retrieval facilities to users. We also discuss many of the current techniques that we are investigating to combine these top-down and bottom-up approaches

    Additional value of EUS in oesophageal cancer patients staged N0 on PET/CT: validation of a prognostic model

    Get PDF
    Background Lymph node metastases are a major prognostic indicator in oesophageal cancer. Radiological staging largely influences treatment decisions and is becoming more reliant on PET and CT. However, the sensitivity of these modalities is suboptimal and is known to under-stage disease. The primary aim of this study was to validate a published prognostic model in oesophageal cancer patients staged N0 with PET/CT, which showed that EUS nodal status was an independent predictor of survival. The secondary aim was to assess the prognostic significance of pathological lymph node metastases in this cohort. Methods An independent validation cohort included 139 consecutive patients from a regional upper gastrointestinal cancer network staged N0 with PET/CT between 1st January 2013 and 31st June 2015. Replicating the original study, two Cox regression models were produced: one included EUS T-stage and EUS N-stage, and one included EUS T-stage and EUS N0 versus N+. The primary outcome of the prognostic model was overall survival (OS). Kaplan–Meier analysis assessed differences in OS between pathological node-negative (pN0) and node-positive (pN+) groups. A p value of < 0.05 was considered statistically significant. Results The mean OS of the validation cohort was 29.8 months (95% CI 27.1–35.2). EUS T-stage was significantly and independently associated with OS in both models (p = 0.011 and p = 0.012, respectively). EUS N-stage and EUS N0 versus N+ were not significantly associated with OS (p = 0.553 and p = 0.359, respectively). There was a significant difference in OS between pN0 and pN+ groups (χ2 13.315, df 1, p < 0.001). Conclusion Lymph node metastases have a significant detrimental effect on OS. This validation study did not replicate the results of the developed prognostic model but the continued benefit of EUS in patients staged N0 with PET/CT was demonstrated. EUS remains a valuable component of a multi-modality approach to oesophageal cancer staging

    Fingermark simulants and their inherent problems: A comparison with latent fingermark deposits

    Get PDF
    Commercially available fingermark simulants werecompared to latent fingermark deposits to assess their efficacy asstandards for a quality control assessment of fingermark developmentreagents. Deposits of the simulants and latent fingermarks were madeon paper substrates and were developed using reagents that targetamino acids (ninhydrin, 1,2-indanedione) and sebaceous secretions(Oil Red O, physical developer). The resulting marks were comparedfor visibility and color. Significant differences were observed betweenthe simulants and latent fingermarks in response to the fingermarkdevelopment reagents. Infrared spectroscopic analysis of the simulantscompared to untreated latent fingermarks revealed differencesin chemical composition. These results indicate that these simulantsare not well suited as quality control standards in forensic laboratoriesand should be used with extreme caution in any form of research intolatent fingermark detection

    Leaping and Landing in Brave Spaces

    Get PDF
    Vapor-fed electrolysis of water has been performed using membrane-electrode assemblies (MEAs) incorporating earth-abundant catalysts and bipolar membranes (BPMs). Catalyst films containing CoP nanoparticles, carbon black, and Nafion were synthesized, characterized, and integrated into cathodes of MEAs. The CoP-containing MEAs exhibited stable (>16 h) vapor-fed electrolysis of water at room temperature at a current density of 10 mA cm⁻² with 350 mV of additional overvoltage relative to MEA's formed from Pt/C cathodic electrocatalysts due to slower hydrogen-evolution reaction kinetics under vapor-fed conditions and fewer available triple-phase boundaries in the catalyst film. Additionally, catalyst films containing a [NiFe]-layered double hydroxide ([NiFe]-LDH) as well as a hydroxide ion conductor, hexamethyl-p-terphenyl poly(benzimidazolium) (HMT-PMBI), were synthesized, characterized, and integrated into the anodes of the MEAs. The [NiFe]-LDH-containing MEAs exhibited overvoltages at 10 mA cm⁻² that were similar to those of IrO_x-containing MEAs for vapor-fed electrolysis of water at room temperature. A BPM was formed by pairing Nafion with HMT-PMBI, resulting in a locally alkaline environment of HMT-PMBI to stabilize the [NiFe]-LDH and a locally acidic environment to stabilize the CoP. BPM-based MEAs were stable (>16 h) for vapor-fed electrolysis of water at room temperature at a current density of 10 mA cm⁻², with a change in the pH gradient of 1 unit over 16 h of electrolysis for IrOx-containing MEAs. The stability of [NiFe]-LDH-based MEAs under vapor-fed conditions was dependent on the catalyst film morphology and resulting BPM interface, with stable operation at 10 mA cm⁻² achieved for 16 h. All MEAs exhibited a drift in the operating voltage over time associated with dehydration. These results demonstrate that earth-abundant catalysts and BPMs can be incorporated into stable, room-temperature, vapor-fed water-splitting cells operated at 10 mA cm⁻²

    Variability and subjectivity in the grading process for evaluating the performance of latent fingermark detection techniques

    Get PDF
    When assessing latent fingermark development methods, forensic researchers commonly evaluate treated samples using a grading scale. However, the subjective nature of these evaluation methods leaves the results of such investigations open to criticism for potential grader bias. Assessment of fingermark development quality is ultimately dependent on an individual's background and experience. A pilot study was conducted as a preliminary stage of a large-scale international collaboration. A set of 80 fingermark samples was developed with 1,2-indanedione-zinc chloride. Grades for photographic images of the developed fingermarks were assigned independently by 11 fingermark researchers. Sixty-seven percent of the scores given to each individual sample were the same as the median grade, and 99% of the scores were within 1 grade. The researchers were also assessed on their consistency by including 20 duplicate images to be graded. Seventy-eight percent of the grades given were identical to their original scores. These results indicate that a small group of independent fingermark graders is sufficient to produce reliable and consistent data in projects requiring the assessment of fingermark quality

    Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates

    Full text link
    Specific proteolysis plays an important role in the terminal differentiation of keratinocytes in the epidermis and several types of proteases have been implicated in this process. The proprotein convertases (PCs) are a family of Ca 2+ -dependent serine proteases involved in processing and activation of several types of substrates. In this study we examined the expression and some potential substrates of PCs in epidermis. Four PCs are expressed in epidermis: furin, PACE4, PC5/6 and PC7/8. Furin is detected in two forms, either with or without the transmembrane domain, suggesting occurrence of post-translational cleavage to produce a soluble enzyme. In addition the furin active site has differential accessibility in the granular layer of the epidermis relative to the basal layer, whereas antibodies to the transmembrane domain stain both layers. These findings suggest that furin has access to different types of substrates in granular cells as opposed to basal cells. PC7/8, in contrast, is detected throughout the epidermis with antibodies to both the transmembrane and active site and no soluble form observed. A peptide PC inhibitor (dec-RVKR-CMK) inhibits cleavage of Notch-1, a receptor important in cell fate determination that is found throughout the epidermis. Profilaggrin, found in the granular layer, is specifically cleaved by furin and PACE4 in vitro at a site between the amino terminus and the first filaggrin repeat. This work suggests that the PCs play multiple roles during epidermal differentiation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75749/1/j.1600-0625.2001.010003193.x.pd

    Constraints on stellar grain formation from presolar graphite in the murchison meteorite

    Get PDF
    We report the results of isotopic, chemical, structural, and crystallographic microanalyses of graphitic spherules (0.3-9 &#956;m) extracted from the Murchison meteorite. The spherules have 12C/13C ratios ranging over 3 orders of magnitude (from 0.02 to 80 times solar), clearly establishing their presolar origin as stellar condensates. These and other isotopic constraints point to a variety of stellar types as sources of the carbon, including low-mass asymptotic giant branch (AGB) stars and supernovae. Transmission electron microscopy (TEM) of ultrathin sections of the spherules revealed that many have a composite structure consisting of a core of nanocrystalline carbon surrounded by a mantle of well-graphitized carbon. The nanocrystalline cores are compact masses consisting of randomly oriented graphene sheets, from PAH-sized units up to sheets 3-4 nm in diameter, with little graphitic layering order. These sheets probably condensed as isolated particles that subsequently coalesced to form the cores, after which the surrounding graphitic mantles were added by vapor deposition. We also detected internal crystals of metal carbides in one-third of the spherules. These crystals (5-200 nm) have compositions ranging from nearly pure TiC to nearly pure Zr-Mo carbide. Some of these carbides occur at the centers of the spherules and are surrounded by well-graphitized carbon, having evidently served as heterogeneous nucleation centers for condensation of carbon. Others were entrained by carbon as the spherules grew. The chemical and textural evidence indicates that these carbides formed prior to carbon condensation, which indicates that the C/O ratios in the stellar sources were very close to unity. Only one of the 67 spherules studied in the TEM contained SiC, from which we infer that carbon condensation nearly always preceded SiC formation. This observation places stringent limits on the possible delay of graphite formation and is consistent with the predictions of equilibrium thermodynamics in the inferred range of pressure and C/O ratios. We model the formation of the observed refractory carbides under equilibrium conditions, both with and without s-process enrichment of Zr and Mo, and show that the chemical variation among internal crystals is consistent with the predicted equilibrium condensation sequence. The compositions of most of the Zr-Mo-Ti carbides require an s-process enrichment of both Zr and Mo to at least 30 times their solar abundances relative to Ti. However, to account for crystals in which Mo is also enriched relative to Zr, it is necessary to suppose that Zr is removed by separation of the earliest formed ZrC crystals from their parent gas. We also explore the formation constraints imposed by kinetics, equilibrium thermodynamics, and the observation of clusters of carbide crystals in some spherules, and conclude that relatively high formation pressures (&#x2273; 0.1 dynes cm-2), and/or condensable carbon number densities (&#x2273;108 cm-3) are required. The graphite spherules with 12C/13C ratios less than the solar value may have originated in AGB stellar winds. However, in the spherically symmetric AGB atmospheres customarily assumed in models of stellar grain formation, pressures are much too low (by factors of &#x2273;102) to produce carbide crystals or graphite spherules of the sizes observed within plausible timescales. If some of the graphite spherules formed in the winds from such stars, it thus appears necessary to assume that the regions of grain formation are density concentrations with length scales less than a stellar radius. Some of the spherules with both12C/13C ratios greater than the solar value and 28Si excesses probably grew in the ejecta of super-novae. The isotopic compositions and growth constraints imply that they must have formed at high densities (e.g., with p&#x2273;10-12 g cm-3) from mixtures of inner-shell material with material from the C-rich outer zones
    corecore