10 research outputs found

    The detection and sensory perception of inspiratory resistive loads in people with chronic tetraplegia

    Full text link
    This study investigated sensations of breathing following tetraplegia. Fifteen people with chronic tetraplegia and fifteen healthy able-bodied controls matched for age, sex, height, and weight participated. Sensations of breathing were quantified by determining the threshold for detecting an added resistance during inspiration. In a separate task, the perceived magnitudes of six suprathreshold resistive loads were determined with a modified Borg scale. The detection threshold of 0.34 cmH2O/L/s [standard deviation (SD) 0.14] in the tetraplegia group was higher than the 0.23 cmH2O/L/s (SD 0.10) threshold for able-bodied controls (P = 0.004). Both participant groups perceived larger loads to be more effortful, with the Borg effort rating increasing linearly with the peak inspiratory pressure generated at each load. The relationship between Borg effort rating and peak inspiratory pressure was steeper in participants with tetraplegia than in able-bodied controls (P = 0.001), but there was no difference when pressure was divided by maximal inspiratory pressure (P = 0.95). Despite a higher detection threshold, the findings suggest that the perceived magnitude of a suprathreshold inspiratory load is not impaired in chronic tetraplegia and that load magnitude perception is related to the maximal, and not absolute, inspiratory muscle force. NEW & NOTEWORTHY Sensations of breathing are thought to be impaired following chronic tetraplegia. The detection threshold for an added resistive load during inspiration was higher in people with tetraplegia than in healthy able-bodied participants. However, for inspiratory loads above the detection threshold, the perceived magnitude of a resistive load as a function of the peak inspiratory pressure was greater in tetraplegia. Load magnitude perception was comparable between participant groups when peak pressure was divided by maximal inspiratory pressure

    Ecology and evolution of soil nematode chemotaxis.

    Get PDF
    Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse functional and taxonomic types, which may reveal a variety of responses. We predicted that nematodes of different feeding guilds use host-specific cues for chemotaxis. However, the examination of a comprehensive nematode phylogeny revealed that distantly related nematodes, and nematodes from different feeding guilds, can exploit the same signals for positive orientation. Carbon dioxide (CO(2)), which is ubiquitous in soil and indicates biological activity, is widely used as such a cue. The use of the same signals by a variety of species and species groups suggests that parts of the chemo-sensory machinery have remained highly conserved during the radiation of nematodes. However, besides CO(2), many other chemical compounds, belonging to different chemical classes, have been shown to induce chemotaxis in nematodes. Plants surrounded by a complex nematode community, including beneficial entomopathogenic nematodes, plant-parasitic nematodes, as well as microbial feeders, are thus under diffuse selection for producing specific molecules in the rhizosphere that maximize their fitness. However, it is largely unknown how selection may operate and how belowground signaling may evolve. Given the paucity of data for certain groups of nematodes, future work is needed to better understand the evolutionary mechanisms of communication between plant roots and soil biota

    Pretargeted Radioimmunotherapy for Hematologic and Other Malignancies

    No full text
    Radioimmunotherapy (RIT) has emerged as one of the most promising treatment options, particularly for hematologic malignancies. However, this approach has generally been limited by a suboptimal therapeutic index (target-to-nontarget ratio) and an inability to deliver sufficient radiation doses to tumors selectively. Pretargeted RIT (PRIT) circumvents these limitations by separating the targeting vehicle from the subsequently administered therapeutic radioisotope, which binds to the tumor-localized antibody or is quickly excreted if unbound. A growing number of preclinical proof-of-principle studies demonstrate that PRIT is feasible and safe and provides improved directed radionuclide delivery to malignant cells compared with conventional RIT while sparing normal cells from nonspecific radiotoxicity. Early phase clinical studies corroborate these preclinical findings and suggest better efficacy and lesser toxicities in patients with hematologic and other malignancies. With continued research, PRIT-based treatment strategies promise to become cornerstones to improved outcomes for cancer patients despite their complexities

    Mammalian sperm nuclear organization: resiliencies and vulnerabilities

    No full text
    International audienc

    The Herpes Virus

    No full text

    Mammalian sperm nuclear organization: resiliencies and vulnerabilities

    No full text
    corecore