2,044 research outputs found

    Iron supplementation and altitude: Decision making using a regression tree

    Get PDF
    [No abstract available

    Pre-Altitude Serum Ferritin Levels and Daily Oral Iron Supplement Dose Mediate Iron Parameter and Hemoglobin Mass Responses to Altitude Exposure

    Get PDF
    Purpose : To investigate the influence of daily oral iron supplementation on changes in hemoglobin mass (Hbmass) and iron parameters after 2–4 weeks of moderate altitude exposure.Methods :Hematological data collected from 178 athletes (98 males, 80 females) exposed to moderate altitude (1,350–3,000 m) were analysed using linear regression to determine how altitude exposure combined with oral iron supplementation influenced Hbmass, total iron incorporation (TII) and blood iron parameters [ferritin and transferrin saturation (TSAT)]. Results :Altitude exposure (mean ± s: 21 ± 3 days) increased Hbmass by 1.1% [-0.4, 2.6], 3.3% [1.7, 4.8], and 4.0% [2.0, 6.1] from pre-altitude levels in athletes who ingested nil, 105 mg and 210 mg respectively, of oral iron supplement daily. Serum ferritin levels decreased by -33.2% [-46.9, -15.9] and 13.8% [-32.2, 9.7] from pre-altitude levels in athletes who supplemented with nil and 105 mg of oral iron supplement daily, but increased by 36.8% [1.3, 84.8] in athletes supplemented with 210 mg of oral iron daily. Finally, athletes who ingested either 105 mg or 210 mg of oral iron supplement daily had a greater TII compared with non-supplemented athletes (0 versus 105 mg: effect size (d) = -1.88 [-2.56, -1.17]; 0 versus 210 mg: effect size (d) = -2.87 [-3.88, -1.66]). Conclusion :Oral iron supplementation during 2–4 weeks of moderate altitude exposure may enhance Hbmass production and assist the maintenance of iron balance in some athletes with low pre-altitude iron stores

    Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway.

    Get PDF
    The CXCR4 receptor (Chemokine C-X-C motif receptor 4) is highly expressed in different hematological malignancies including chronic lymphocytic leukemia (CLL). The CXCR4 ligand (CXCL12) stimulates CXCR4 promoting cell survival and proliferation, and may contribute to the tropism of leukemia cells towards lymphoid tissues. Therefore, strategies targeting CXCR4 may constitute an effective therapeutic approach for CLL. To address that question, we studied the effect of Ulocuplumab (BMS-936564), a fully human IgG4 anti-CXCR4 antibody, using a stroma--CLL cells co-culture model. We found that Ulocuplumab (BMS-936564) inhibited CXCL12 mediated CXCR4 activation-migration of CLL cells at nanomolar concentrations. This effect was comparable to AMD3100 (Plerixafor--Mozobil), a small molecule CXCR4 inhibitor. However, Ulocuplumab (BMS-936564) but not AMD3100 induced apoptosis in CLL at nanomolar concentrations in the presence or absence of stromal cell support. This pro-apoptotic effect was independent of CLL high-risk prognostic markers, was associated with production of reactive oxygen species and did not require caspase activation. Overall, these findings are evidence that Ulocuplumab (BMS-936564) has biological activity in CLL, highlight the relevance of the CXCR4-CXCL12 pathway as a therapeutic target in CLL, and provide biological rationale for ongoing clinical trials in CLL and other hematological malignancies

    Stoichiometry-anisotropy connections in epitaxial L1(0) FePt(001) films

    Get PDF
    The order parameters and anisotropy constants of a series of epitaxial L1(0) FePt films with compositions in the range of 45-55 at. % Fe and nominal thicknesses of 50 nm have been characterized. The films were made by cosputtering the elements onto single crystal MgO(001) substrates. The substrates were coated with 1 nm Pt/1 nm Fe bilayer seeds prior to alloy deposition. Both the bilayer seed and the alloy film were deposited at 620 degreesC. Lattice and order parameters were obtained by x-ray diffraction. Film compositions and thicknesses were determined by Rutherford backscattering spectrometry, and room-temperature magnetocrystalline anisotropies were determined with a torque magnetometer. It was found that the order parameter had a maximum for the film composition closest to the equiatomic composition, whereas the magnetocrystalline anisotropy increased as the Fe content increased from below to slightly above the equiatomic composition. These results imply that nonstoichiometric FePt compositions, with a slight excess of Fe, may in fact be preferred for applications that require high anisotropy

    Prey of reintroduced fishers and their habitat relationships in the Cascades T Range, Washington

    Get PDF
    Conservation and recovery of forest carnivores requires an understanding of their habitat requirements, as well as requirements of their prey. In much of the western United States, trapping and habitat loss led to extirpations of fishers (Pekania pennanti) by the mid-20th century, and reintroductions are ongoing to restore fishers to portions of their former range. Fisher recovery in Washington State has been limited by isolation from other populations, but other potentially important factors, such as diet of fishers in this region and prey availability, have not been thoroughly investigated. We collected hair samples from potential prey and fishers for stable isotope analysis to identify important prey items for fishers within a reintroduction area in southern Washington. We then estimated the abundance of prey species at 21 sites across a gradient of forest structural classes within the fisher reintroduction area, and assessed the effects of forest age and vegetation on the prey community using permutational multivariate analysis of variance and non-metric multidimensional scaling. Stable isotopes revealed that larger prey items, including snowshoe hares (Lepus americanus) and/or mountain beavers (Aplodontia rufa), were the most important prey item(s) for fishers in the southern Cascades. We found distinct but equally diverse prey communities in old-growth (unmanaged) and young (heavily managed) forest stands, with snowshoe hares and mountain beavers most common in young forests, while chipmunks (Neotamius spp.) and small mammals were more common in older forests. Our results suggest a discrepancy between the habitats where important fisher prey are most abundant and habitat requirements of fishers. Snowshoe hares and mountain beavers were most abundant in young forests, whereas fishers are associated with landscapes dominated by older forest stands or those that provide large woody structures, which fishers use for denning and resting. Our results add to growing evidence that forest landscape mosaics provide valuable habitat for fishers in the Pacific Northwest, suggesting that both mature and younger forest stands are important for fishers and fisher recovery

    Local cortical dynamics of burst suppression in the anaesthetized brain

    Get PDF
    Burst suppression is an electroencephalogram pattern that consists of a quasi-periodic alternation between isoelectric ‘suppressions’ lasting seconds or minutes, and high-voltage ‘bursts’. It is characteristic of a profoundly inactivated brain, occurring in conditions including hypothermia, deep general anaesthesia, infant encephalopathy and coma. It is also used in neurology as an electrophysiological endpoint in pharmacologically induced coma for brain protection after traumatic injury and during status epilepticus. Classically, burst suppression has been regarded as a ‘global’ state with synchronous activity throughout cortex. This assumption has influenced the clinical use of burst suppression as a way to broadly reduce neural activity. However, the extent of spatial homogeneity has not been fully explored due to the challenges in recording from multiple cortical sites simultaneously. The neurophysiological dynamics of large-scale cortical circuits during burst suppression are therefore not well understood. To address this question, we recorded intracranial electrocorticograms from patients who entered burst suppression while receiving propofol general anaesthesia. The electrodes were broadly distributed across cortex, enabling us to examine both the dynamics of burst suppression within local cortical regions and larger-scale network interactions. We found that in contrast to previous characterizations, bursts could be substantially asynchronous across the cortex. Furthermore, the state of burst suppression itself could occur in a limited cortical region while other areas exhibited ongoing continuous activity. In addition, we found a complex temporal structure within bursts, which recapitulated the spectral dynamics of the state preceding burst suppression, and evolved throughout the course of a single burst. Our observations imply that local cortical dynamics are not homogeneous, even during significant brain inactivation. Instead, cortical and, implicitly, subcortical circuits express seemingly different sensitivities to high doses of anaesthetics that suggest a hierarchy governing how the brain enters burst suppression, and emphasize the role of local dynamics in what has previously been regarded as a global state. These findings suggest a conceptual shift in how neurologists could assess the brain function of patients undergoing burst suppression. First, analysing spatial variation in burst suppression could provide insight into the circuit dysfunction underlying a given pathology, and could improve monitoring of medically-induced coma. Second, analysing the temporal dynamics within a burst could help assess the underlying brain state. This approach could be explored as a prognostic tool for recovery from coma, and for guiding treatment of status epilepticus. Overall, these results suggest new research directions and methods that could improve patient monitoring in clinical practice.Burroughs Wellcome Fund (Career Award at the Scientific Interface)National Institutes of Health (U.S.) (Director's Pioneer Award DP10D003646)National Institutes of Health (U.S.) (Transformative 1R01GM104948

    Establishment of long-term ostracod epidermal culture

    Get PDF
    Primary crustacean cell culture was introduced in the 1960s, but to date limited cell lines have been established. Skogsbergia lerneri is a myodocopid ostracod, which has a body enclosed within a thin, durable, transparent bivalved carapace, through which the eye can see. The epidermal layer lines the inner surface of the carapace and is responsible for carapace synthesis. The purpose of the present study was to develop an in vitro epidermal tissue and cell culture method for S. lerneri. First, an optimal environment for the viability of this epidermal tissue was ascertained, while maintaining its cell proliferative capacity. Next, a microdissection technique to remove the epidermal layer for explant culture was established and finally, a cell dissociation method for epidermal cell culture was determined. Maintenance of sterility, cell viability and proliferation were key throughout these processes. This novel approach for viable S. lerneri epidermal tissue and cell culture augments our understanding of crustacean cell biology and the complex biosynthesis of the ostracod carapace. In addition, these techniques have great potential in the fields of biomaterial manufacture, the military and fisheries, for example, in vitro toxicity testing
    • …
    corecore