1,344 research outputs found

    Silicon and tungsten oxide nanostructures for water splitting

    Get PDF
    Inorganic semiconductors are promising materials for driving photoelectrochemical water-splitting reactions. However, there is not a single semiconductor material that can sustain the unassisted splitting of water into H_2 and O_2. Instead, we are developing a three part cell design where individual catalysts for water reduction and oxidation will be attached to the ends of a membrane. The job of splitting water is therefore divided into separate reduction and oxidation reactions, and each catalyst can be optimized independently for a single reaction. Silicon might be suitable to drive the water reduction. Inexpensive highly ordered Si wire arrays were grown on a single crystal wafer and transferred into a transparent, flexible polymer matrix. In this array, light would be absorbed along the longer axial dimension while the resulting electrons or holes would be collected along the much shorter radial dimension in a massively parallel array resembling carpet fibers on a microscale, hence the term "solar carpet". Tungsten oxide is a good candidate to drive the water oxidation. Self-organized porous tungsten oxide was successfully synthesized on the tungsten foil by anodization. This sponge-like structure absorbs light efficiently due to its high surface area; hence we called it "solar sponge"

    A putative ariadne-like E3 ubiquitin ligase (PAUL) that interacts with the muscle-specific kinase (MuSK).

    Get PDF
    Formation of the postsynaptic membrane at the skeletal neuromuscular junction (NMJ) requires activation of the muscle-specific receptor tyrosine kinase (MuSK). Few intracellular mediators or modulators of MuSK actions are known. E3 ubiquitin ligases may serve this role, because activities of several receptor tyrosine kinases, G-protein-coupled receptors and channels are modulated by ubiquitination. Here, we report identification of a putative Ariadne-like ubiquitin ligase (PAUL) that binds to the cytoplasmic domain of MuSK. PAUL is expressed in numerous tissues of developing and adult mice, and is present at NMJs in muscle fibers but is not confined to them.Peer reviewe

    Low vitamin D status is associated with impaired bone quality and increased risk of fracture-related hospitalization in older Australian women

    Get PDF
    The vitamin D debate relates in part to ideal public health population levels of circulating 25-hydroxyvitamin D (25OHD) to maintain bone structure and reduce fracture. In a secondary analysis of 1,348 women aged 70-85 years at baseline (1998) from the Perth Longitudinal Study of Aging in Women (PLSAW, a five-year calcium supplementation trial followed by two five-year extensions), we examined the dose-response relations of baseline plasma 25OHD with hip DXA BMD at year 1, lumbar spine BMD and trabecular bone score (TBS) at year 5, and fracture-related hospitalizations over 14.5 years obtained by health record linkage. Mean baseline plasma 25OHD was 66.9±28.2 nmol/L and 28.5%, 36.4% and 35.1% of women had levels50 nmol/L are a minimum public health target and 25OHD levels beyond 75 nmol/L may not have additional benefit to reduce fracture risk

    Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover.

    Get PDF
    Desmosomes are prominent adhesive junctions present between many epithelial cells as well as cardiomyocytes. The mechanisms controlling desmosome assembly and remodeling in epithelial and cardiac tissue are poorly understood. We recently identified protein palmitoylation as a mechanism regulating desmosome dynamics. In this study, we have focused on the palmitoylation of the desmosomal cadherin desmoglein-2 (Dsg2) and characterized the role that palmitoylation of Dsg2 plays in its localization and stability in cultured cells. We identified two cysteine residues in the juxtamembrane (intracellular anchor) domain of Dsg2 that, when mutated, eliminate its palmitoylation. These cysteine residues are conserved in all four desmoglein family members. Although mutant Dsg2 localizes to endogenous desmosomes, there is a significant delay in its incorporation into junctions, and the mutant is also present in a cytoplasmic pool. Triton X-100 solubility assays demonstrate that mutant Dsg2 is more soluble than wild-type protein. Interestingly, trafficking of the mutant Dsg2 to the cell surface was delayed, and a pool of the non-palmitoylated Dsg2 co-localized with lysosomal markers. Taken together, these data suggest that palmitoylation of Dsg2 regulates protein transport to the plasma membrane. Modulation of the palmitoylation status of desmosomal cadherins can affect desmosome dynamics

    Snowmass Early Career: The Key Initiatives Organization

    Full text link
    In April 2020, the 2019 and 2020 American Physical Society's Division of Particles and Fields (APS DPF) Early Career Executive Committee (ECEC) members were tasked with organizing the formation of a representative body for High-Energy Physics (HEP) early career members for the Snowmass process by the DPF Executive Committee. Here, we outline the structure we developed and the process we followed to help provide context and guidance for future early career Snowmass efforts. Our organization was composed of a cross-frontier branch with committees on Inreach, Diversity Equity and Inclusion, Survey, and Long Term Organizational Planning; in addition to the Frontier Coordination branch, formed by committees responsible for liaising with each Frontier. Throughout this document, the authors reflect on the triumphs and pitfalls of a program created from nothing over a very short period of time, by people with good intentions, who had no prior experience in building such an organization. Through this exercise of reflecting, we sometimes find that we would recommend a different path to our future selves. Insomuch as there are things to find fault with, it is in the robustness of the systems we built and refined.Comment: contribution to Snowmass 2021, 16 pages, 0 figure

    Association between aortic calcification, cardiovascular events, and mortality in kidney and pancreas-kidney transplant recipients

    Get PDF
    BACKGROUND: Cardiovascular (CV) disease is the leading cause of death in kidney and simultaneous pancreas-kidney (SPK) transplant recipients. Assessing abdominal aortic calcification (AAC), using lateral spine x-rays and the Kaupilla 24-point AAC (0-24) score, may identify transplant recipients at higher CV risk. METHODS: Between the years 2000 and 2015, 413 kidney and 213 SPK first transplant recipients were scored for AAC at time of transplant and then followed for CV events (coronary heart, cerebrovascular, or peripheral vascular disease), graft-loss, and all-cause mortality. RESULTS: The mean age was 44 ± 12 years (SD) with 275 (44%) having AAC (26% moderate: 1-7 and 18% high: ≥8). After a median of 65 months (IQR 29-107 months), 46 recipients experienced CV events, 59 died, and 80 suffered graft loss. For each point increase in AAC, the unadjusted hazard ratios (HR) for CV events and mortality were 1.11 (95% CI 1.07-1.15) and 1.11 (1.08-1.15). These were similar after adjusting for age, gender, smoking, transplant type, dialysis vintage, and diabetes: aHR 1.07 (95% CI 1.02-1.12) and 1.09 (1.04-1.13). For recipients with high versus no AAC, the unadjusted and fully-adjusted HRs for CV events were 5.90 (2.90-12.02) and 3.51 (1.54-8.00), for deaths 5.39 (3.00-9.68) and 3.38 (1.71-6.70), and for graft loss 1.30 (0.75-2.28) and 1.94 (1.04-3.27) in age and smoking history-adjusted analyses. CONCLUSION: Kidney and SPK transplant recipients with high AAC have 3-fold higher CV and mortality risk and poorer graft outcomes than recipients without AAC. AAC scoring may be useful in assessing and targeted risk-lowering strategies

    Roles of bone-derived hormones in type 2 diabetes and cardiovascular pathophysiology

    Get PDF
    Background: Emerging evidence demonstrates that bone is an endocrine organ capable of influencing multiple physiological and pathological processes through the secretion of hormones. Recent research suggests complex crosstalk between the bone and other metabolic and cardiovascular tissues. It was uncovered that three of these bone-derived hormones—osteocalcin, lipocalin 2, and sclerostin—are involved in the endocrine regulations of cardiometabolic health and play vital roles in the pathophysiological process of developing cardiometabolic syndromes such as type 2 diabetes and cardiovascular disease. Chronic low-grade inflammation is one of the hallmarks of cardiometabolic diseases and a major contributor to disease progression. Novel evidence also implicates important roles of bone-derived hormones in the regulation of chronic inflammation. Scope of review: In this review, we provide a detailed overview of the physiological and pathological roles of osteocalcin, lipocalin 2, and sclerostin in cardiometabolic health regulation and disease development, with a focus on the modulation of chronic inflammation. Major conclusions: Evidence supports that osteocalcin has a protective role in cardiometabolic health, and an increase of lipocalin 2 contributes to the development of cardiometabolic diseases partly via pro-inflammatory effects. The roles of sclerostin appear to be complicated: It exerts pro-adiposity and pro-insulin resistance effects in type 2 diabetes and has an anti-calcification effect during cardiovascular disease. A better understanding of the actions of these bone-derived hormones in the pathophysiology of cardiometabolic diseases will provide crucial insights to help further research develop new therapeutic strategies to treat these diseases
    • …
    corecore