4,123 research outputs found

    Imaging the Molecular Gas in A z=3.9 Quasar Host Galaxy at 0\farcs3 Resolution: A Central, Sub-Kilparsex Scale Star Formation Reservoir in APM 08279+5255

    Get PDF
    We have mapped the molecular gas content in the host galaxy of the strongly lensed high-redshift quasar APM 08279+5255 (z = 3.911) with the Very Large Array at 0\farcs3 resolution. The CO(J = 1➝0) emission is clearly resolved in our maps. The CO(J = 1➝0) line luminosity derived from these maps is in good agreement with a previous single-dish measurement. In contrast to previous interferometer-based studies, we find that the full molecular gas reservoir is situated in two compact peaks separated by ≲0\farcs4. Our observations reveal, for the first time, that the emission from cold molecular gas is virtually co-spatial with the optical/near-infrared continuum emission of the central active galactic nucleus (AGN) in this source. This striking similarity in morphology indicates that the molecular gas is situated in a compact region close to the AGN. Based on the high-resolution CO maps, we present a revised model for the gravitational lensing in this system, which indicates that the molecular gas emission is magnified by only a factor of 4 (in contrast to previously suggested factors of 100). This model suggests that the CO is situated in a circumnuclear disk of ~550 pc radius that is possibly seen at an inclination of ≲25°, i.e., relatively close to face-on. From the CO luminosity, we derive a molecular gas mass of Mgas = 1.3x10^11 M☉ for this galaxy. From the CO structure and linewidth, we derive a dynamical mass of M dyn sin^2 i = 4.0x10^10 M☉. Based on a revised mass estimate for the central black hole of Mbh = 2.3x10^10 M☉ and the results of our molecular line study, we find that the mass of the stellar bulge of APM 08279+5255 falls short of the local M BH-σbulge relationship of nearby galaxies by more than an order of magnitude, lending support to recent suggestions that this relation may evolve with cosmic time and/or change toward the high-mass end

    Trajectory generation for cooperating robots

    Get PDF
    Includes bibliographical references (page 302).This paper derives a formulation for on-line trajectory generation for two robots cooperating to perform an assembly task. The two robots are treated as a single redundant system. A Jacobian is formulated that relates the joint rates of the entire system to the relative motion of one of the hands with respect to the other. The minimum norm solution of this relative Jacobian equation results in a set of joint rates which perform the cooperative task. In addition to the cooperative task, secondary goals, which include obstacle and joint limit avoidance, are specified using velocities in the null space of the relative Jacobian. This formulation also allows the robots to be controlled in parallel on independent tasks

    A Molecular Einstein Ring at z=4.12: Imaging the Dynamics of a Quasar Host Galaxy Through a Cosmic Lens

    Get PDF
    We present high-resolution (0.3") Very Large Array (VLA) imaging of the molecular gas in the host galaxy of the high redshift quasar PSS J2322+1944 (z=4.12). These observations confirm that the molecular gas (CO) in the host galaxy of this quasar is lensed into a full Einstein ring, and reveal the internal dynamics of the molecular gas in this system. The ring has a diameter of ~1.5", and thus is sampled over ~20 resolution elements by our observations. Through a model-based lens inversion, we recover the velocity gradient of the molecular reservoir in the quasar host galaxy of PSS J2322+1944. The Einstein ring lens configuration enables us to zoom in on the emission and to resolve scales down to ~1 kpc. From the model-reconstructed source, we find that the molecular gas is distributed on a scale of 5 kpc, and has a total mass of M(H2)=1.7 x 10^10 M_sun. A basic estimate of the dynamical mass gives M_dyn = 4.4 x 10^10 (sin i)^-2 M_sun, that is, only ~2.5 times the molecular gas mass, and ~30 times the black hole mass (assuming that the dynamical structure is highly inclined). The lens configuration also allows us to tie the optical emission to the molecular gas emission, which suggests that the active galactic nucleus (AGN) does reside within, but not close to the center of the molecular reservoir. Together with the (at least partially) disturbed structure of the CO, this suggests that the system is interacting. Such an interaction, possibly caused by a major `wet' merger, may be responsible for both feeding the quasar and fueling the massive starburst of 680 M_sun/yr in this system, in agreement with recently suggested scenarios of quasar activity and galaxy assembly in the early universe.Comment: 9 pages, 7 figures, to appear in ApJ (accepted June 27, 2008

    Prayer and psychological health: a study among sixth-form pupils attending Catholic and Protestant schools in Northern Ireland

    Get PDF
    Eysenck's dimensional model of personality includes two indicators of psychological health, defined as neuroticism and psychoticism. In order to examine the association between psychological health and prayer, two samples of sixth-form pupils in Northern Ireland (16- to 18-year-olds) attending Catholic (N = 1246) and Protestant (N = 1060) schools completed the abbreviated Revised Eysenck Personality Questionnaire alongside a simple measure of prayer frequency. The data demonstrated a positive association between prayer frequency and better levels of psychological health as assessed by Eysenck's notion of psychoticism. Among pupils attending both Catholic and Protestant schools, higher levels of prayer were associated with lower psychoticism scores. Among pupils attending Catholic schools, however, higher levels of prayer were also associated with higher neuroticism scores

    A Region-based Approach for Sparse Parallel Computing

    Get PDF
    This paper introduces a technique for parallel sparse computation by extending the array-language concept of regions---regular programmer-specified index sets used for specifying array computations. We introduce the notion of sparse regions which can represent an arbitrary set of indices. Sparse regions inherit the benefits of regular regions, including conciseness, a direct encapsulation of parallelism, and support for language performance models that highlight parallel overheads. We show that region-based array languages can benefit from the use of sparse regions, both in terms of the semantic richness available to the programmer and the execution times of the resulting program. We also demonstrate that regions result in efficient implementations as compared to array-based approachs, due to their role in amortizing sparse overheads and enabling optimizations

    The short-form revised Eysenck personality Questionnaire (EPQ-S): A German edition

    Get PDF
    A sample of 331 undergraduate students in Germany completed the German translation of the short form Revised Eysenck Personality Questionnaire (EPQR-S; Eysenck, Eysenck, & Barrett,1985). The findings support the psychometric properties of the extraversion, neuroticism and lie scales. The psychoticism scale, however, was found to be less satisfactory

    Institutional and technological barriers to the use of open educational resources (OERs) in physiology and medical education

    Get PDF
    Open educational resources (OERs) are becoming increasingly common as a tool in education, particularly in medical and biomedical education. However, three key barriers have been identified to their use: (i) lack of awareness of OERs, (ii) lack of motivation to use OERs, and (iii) lack of training in the use of OERs. Here, we explore these three barriers with teachers of medical and biomedical science to establish how best to enhance the use of OERs to improve pedagogical outcomes. An online survey was completed by 209 educators, many of whom (68.4%) reported using OERs in their teaching, and almost all (99.5%) showing awareness of at least one OER. Results suggest that key problems that prevent educators from adopting OERs in their teaching include suitability for particular classes, time, and copyright. Most (81.8%) educators were somewhat, very, or extremely comfortable with OERs so there is no innate motivational barrier to adoption. A lack of training was reported by 13.9% of respondents, and 40% of respondents stated that there was little or no support from their institutions. OER users were no more comfortable with technology or better supported by departments, but tended to be aware of a greater number of sources of OERs. Our study illustrates key opportunities for the expansion of OER use in physiology and medical teaching: increased breadth of awareness, increased institutional support (including time, training, and copyright support), and greater sharing of diverse OERs to suit the range of teaching challenges faced by staff in different subdisciplines

    Interplay between magnetism and short-range order in medium- and high-entropy alloys: CrCoNi, CrFeCoNi, and CrMnFeCoNi

    Get PDF
    The impact of magnetism on predicted atomic short-range order in three medium- and high-entropy alloys is studied using a first-principles, all-electron, Landau-type linear response theory, coupled with lattice-based atomistic modelling. We perform two sets of linear-response calculations: one in which the paramagnetic state is modelled within the disordered local moment picture, and one in which systems are modelled in a magnetically ordered state, which is ferrimagnetic for the alloys considered in this work. We show that the treatment of magnetism can have significant impact both on the predicted temperature of atomic ordering and also the nature of atomic order itself. In CrCoNi, we find that the nature of atomic order changes from being L12\mathrm{L}1_2-like when modelled in the paramagnetic state to MoPt2_2-like when modelled assuming the system has magnetically ordered. In CrFeCoNi, atomic correlations between Fe and the other elements present are dramatically strengthened when we switch from treating the system as magnetically disordered to magnetically ordered. Our results show it is necessary to consider the magnetic state when modelling multicomponent alloys containing mid- to late-3d3d elements. Further, we suggest that there may be high-entropy alloy compositions containing 3d3d transition metals that will exhibit specific atomic short-range order when thermally treated in an applied magnetic field. This has the potential to provide a route for tuning physical and mechanical properties in this class of materials.Comment: 26 pages, 4 figures, 2 table
    corecore