651 research outputs found
Pathways to Drug Liberalization: Racial Justice, Public Health, and Human Rights
In our recent article, together with more than 60 of our colleagues, we outlined a proposal for drug policy reform consisting of four specific yet interrelated strategies: (1) de jure decriminalization of all psychoactive substances currently deemed illicit for personal use or possession (so-called “recreational” drugs), accompanied by harm reduction policies and initiatives akin to the Portugal model; (2) expunging criminal convictions for nonviolent offenses pertaining to the use or possession of small quantities of such drugs (and releasing those serving time for these offenses), while delivering retroactive ameliorative relief; (3) the ultimate legalization and careful regulation of currently illicit drugs; and (4) the delivery of a new “Marshall Plan” focused on community-building initiatives, expanded harm reduction programs, and social and health care support efforts (Earp et al. 2021). We were gratified to see so many thoughtful commentaries on our proposal, and we respond to them in part in this reply
Preliminary genetic analyses of important musculoskeletal conditions of thoroughbred racehorses in Hong Kong
A retrospective cohort study of important musculoskeletal conditions of Thoroughbred racehorses was conducted using health records generated over a 15 year period (n = 5062, 1296 sires). The prevalence of each condition in the study population was: fracture, 13%; osteoarthritis, 10%; suspensory ligament injury, 10%; and tendon injury, 19%. Linear and logistic sire and animal regression models were built to describe the binary occurrence of these musculoskeletal conditions, and to evaluate the significance of possible environmental risk factors. The heritability of each condition was estimated using residual maximum likelihood (REML). Bivariate mixed models were used to generate estimates of genetic correlations between each pair of conditions.<p></p>
Heritability estimates of fracture, osteoarthritis, suspensory ligament and tendon injury were small to moderate (range: 0.01–0.20). Fracture was found to be positively genetically correlated with both osteoarthritis and suspensory ligament injury. These results suggest that there is a significant genetic component involved in the risk of the studied conditions. Due to positive genetic correlations, a reduction in prevalence of one of the correlated conditions may effect a reduction in risk of the other condition.<p></p>
CMBfit: Rapid WMAP likelihood calculations with normal parameters
We present a method for ultra-fast confrontation of the WMAP cosmic microwave
background observations with theoretical models, implemented as a publicly
available software package called CMBfit, useful for anyone wishing to measure
cosmological parameters by combining WMAP with other observations. The method
takes advantage of the underlying physics by transforming into a set of
parameters where the WMAP likelihood surface is accurately fit by the
exponential of a quartic or sextic polynomial. Building on previous physics
based approximations by Hu et.al., Kosowsky et.al. and Chu et.al., it combines
their speed with precision cosmology grade accuracy. A Fortran code for
computing the WMAP likelihood for a given set of parameters is provided,
pre-calibrated against CMBfast, accurate to Delta lnL ~ 0.05 over the entire
2sigma region of the parameter space for 6 parameter ``vanilla'' Lambda CDM
models. We also provide 7-parameter fits including spatial curvature,
gravitational waves and a running spectral index.Comment: 14 pages, 8 figures, References added, accepted for publication in
Phys.Rev.D., a Fortran code can be downloaded from
http://space.mit.edu/home/tegmark/cmbfit
Analysis of CMB polarization on an incomplete sky
The full sky cosmic microwave background polarization field can be decomposed
into 'electric' and 'magnetic' components. Working in harmonic space we
construct window functions that allow clean separation of the electric and
magnetic modes from observations over only a portion of the sky. Our
construction is exact for azimuthally symmetric patches, but should continue to
perform well for arbitrary patches. From the window functions we obtain
variables that allow for robust estimation of the magnetic component without
risk of contamination from the probably much larger electric signal. For
isotropic, uncorrelated noise the variables have a very simple diagonal noise
correlation, and further analysis using them should be no harder than analysing
the temperature field. For an azimuthally-symmetric patch, such as that
obtained from survey missions when the galactic region is removed, the
exactly-separated variables are fast to compute allowing us to estimate the
magnetic signal that could be detected by the Planck satellite in the absence
of non-galactic foregrounds. We also discuss the sensitivity of future
experiments to tensor modes in the presence of a magnetic signal generated by
weak lensing, and give lossless methods for analysing the electric polarization
field in the case that the magnetic component is negligible.Comment: 27 pages, 8 figures. New appendix on weak signal detection and
revised plots using a better statistic. Other changes to match version
accepted by PRD. Sample source code now available at
http://cosmologist.info/pola
Precision Primordial He Measurement with CMB Experiments
Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are
two major pillars of cosmology. Standard BBN accurately predicts the primordial
light element abundances (He, D, He and Li), depending on one
parameter, the baryon density. Light element observations are used as a
baryometers. The CMB anisotropies also contain information about the content of
the universe which allows an important consistency check on the Big Bang model.
In addition CMB observations now have sufficient accuracy to not only determine
the total baryon density, but also resolve its principal constituents, H and
He. We present a global analysis of all recent CMB data, with special
emphasis on the concordance with BBN theory and light element observations. We
find and
(fraction of baryon mass as He) using CMB data alone, in agreement with
He abundance observations. With this concordance established we show that
the inclusion of BBN theory priors significantly reduces the volume of
parameter space. In this case, we find
and . We also find that the inclusion of deuterium
abundance observations reduces the and ranges by a factor
of 2. Further light element observations and CMB anisotropy experiments
will refine this concordance and sharpen BBN and the CMB as tools for precision
cosmology.Comment: 7 pages, 3 color figures made minor changes to bring inline with
journal versio
Mometasone absorption in cultured airway epithelium
Background: Topical mometasone is frequently used as an intranasal spray, on drug-eluting stents, and compounded by specialty pharmacies as a sinus rinse. A typical sinus rinse contains 1.2 mg of mometasone dissolved in 240 mL of buffered saline and is flushed through the sinonasal cavity. The mometasone irrigation rapidly flows to the contralateral sinonasal cavity or the nasopharynx with a contact time on the order of 5 to 10 seconds. However, no information is available on the absorption rate of topical mometasone on the sinonasal surface. Methods: To determine the absorption characteristics of mometasone, we harvested nasal epithelium from 2 healthy donors and differentiated them into a mature ciliated epithelium on Millicell membranes. We applied mometasone to the apical surface for various time intervals and then rinsed off non-absorbed mometasone with phosphate-buffered saline. Millicell membranes with the adherent epithelial cells were then harvested and stored in guanidine hydrochloride for quantification using high-performance liquid chromatography–mass spectrometry. Results: Fifty percent of the maximal absorption occurred after an average of 38 minutes after application, and maximal absorption occurred after an average of 114 minutes. Conclusion: Our data provide an estimate for rates of absorption of mometasone applied to the sinonasal cavity and suggest that the absorption rates poorly match contact time during saline lavage
Low Complexity Regularization of Linear Inverse Problems
Inverse problems and regularization theory is a central theme in contemporary
signal processing, where the goal is to reconstruct an unknown signal from
partial indirect, and possibly noisy, measurements of it. A now standard method
for recovering the unknown signal is to solve a convex optimization problem
that enforces some prior knowledge about its structure. This has proved
efficient in many problems routinely encountered in imaging sciences,
statistics and machine learning. This chapter delivers a review of recent
advances in the field where the regularization prior promotes solutions
conforming to some notion of simplicity/low-complexity. These priors encompass
as popular examples sparsity and group sparsity (to capture the compressibility
of natural signals and images), total variation and analysis sparsity (to
promote piecewise regularity), and low-rank (as natural extension of sparsity
to matrix-valued data). Our aim is to provide a unified treatment of all these
regularizations under a single umbrella, namely the theory of partial
smoothness. This framework is very general and accommodates all low-complexity
regularizers just mentioned, as well as many others. Partial smoothness turns
out to be the canonical way to encode low-dimensional models that can be linear
spaces or more general smooth manifolds. This review is intended to serve as a
one stop shop toward the understanding of the theoretical properties of the
so-regularized solutions. It covers a large spectrum including: (i) recovery
guarantees and stability to noise, both in terms of -stability and
model (manifold) identification; (ii) sensitivity analysis to perturbations of
the parameters involved (in particular the observations), with applications to
unbiased risk estimation ; (iii) convergence properties of the forward-backward
proximal splitting scheme, that is particularly well suited to solve the
corresponding large-scale regularized optimization problem
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
- …