17 research outputs found

    Repo-Man Controls a Protein Phosphatase 1-Dependent Threshold for DNA Damage Checkpoint Activation

    Get PDF
    SummaryBackgroundIn response to DNA damage, cells activate checkpoints to halt cell-cycle progression and prevent genomic instability. Checkpoint activation induced by DNA double-strand breaks (DSB) is dependent on the ATM kinase, a master regulator of the DNA damage response (DDR) that is activated through autophosphorylation and monomerization.ResultsHere we show that either protein phosphatase 1 or 2A is sufficient to suppress activation of the DDR and that simultaneous inhibition of both phosphatases fully activates the response. PP1-dependent DDR regulation is mediated by its chromatin-targeting subunit, Repo-Man. Studies in Xenopus egg extracts demonstrate that Repo-Man interacts with ATM and PP1 through distinct domains, leading to PP1-dependent regulation of ATM phosphorylation and activation. Consequently, the level of Repo-Man determines the activation threshold of the DNA damage checkpoint. Repo-Man interacts and extensively colocalizes with ATM in human cells. Expression of wild-type, but not PP1 binding-deficient, Repo-Man attenuates DNA damage-induced ATM activation. Moreover, Repo-Man dissociates from active ATM at DNA damage sites, suggesting that activation of the DDR involves removal of inhibitory regulators. Analysis of primary tumor tissues and cell lines demonstrates that Repo-Man is frequently upregulated in many types of cancers. Elevated Repo-Man expression blunts DDR activation in precancerous cells, whereas knockdown of Repo-Man in malignant cancer cells resensitizes the DDR and restrains growth in soft agar.ConclusionsWe report essential DDR regulation mediated by Repo-Man-PP1 and further delineate underlying mechanisms. Moreover, our evidence suggests that elevated Repo-Man contributes to cancer progression

    Spindle checkpoint proteins Mad1 and Mad2 are required for cytostatic factor–mediated metaphase arrest

    Get PDF
    In cells containing disrupted spindles, the spindle assembly checkpoint arrests the cell cycle in metaphase. The budding uninhibited by benzimidazole (Bub) 1, mitotic arrest-deficient (Mad) 1, and Mad2 proteins promote this checkpoint through sustained inhibition of the anaphase-promoting complex/cyclosome. Vertebrate oocytes undergoing meiotic maturation arrest in metaphase of meiosis II due to a cytoplasmic activity termed cytostatic factor (CSF), which appears not to be regulated by spindle dynamics. Here, we show that microinjection of Mad1 or Mad2 protein into early Xenopus laevis embryos causes metaphase arrest like that caused by Mos. Microinjection of antibodies to either Mad1 or Mad2 into maturing oocytes blocks the establishment of CSF arrest in meiosis II, and immunodepletion of either protein blocked the establishment of CSF arrest by Mos in egg extracts. A Mad2 mutant unable to oligomerize (Mad2 R133A) did not cause cell cycle arrest in blastomeres or in egg extracts. Once CSF arrest has been established, maintenance of metaphase arrest requires Mad1, but not Mad2 or Bub1. These results suggest a model in which CSF arrest by Mos is mediated by the Mad1 and Mad2 proteins in a manner distinct from the spindle checkpoint

    Bub1 is activated by the protein kinase p90Rsk during Xenopus oocyte maturation

    Get PDF
    AbstractBackground: The kinetochore attachment (spindle assembly) checkpoint arrests cells in metaphase to prevent exit from mitosis until all the chromosomes are aligned properly at the metaphase plate. The checkpoint operates by preventing activation of the anaphase-promoting complex (APC), which triggers anaphase by degrading mitotic cyclins and other proteins. This checkpoint is active during normal mitosis and upon experimental disruption of the mitotic spindle. In yeast, the serine/threonine protein kinase Bub1 and the WD-repeat protein Bub3 are elements of a signal transduction cascade that regulates the kinetochore attachment checkpoint. In mammalian cells, activated MAPK is present on kinetochores during mitosis and activity is upregulated by the spindle assembly checkpoint. In vertebrate unfertilized eggs, a special form of meiotic metaphase arrest by cytostatic factor (CSF) is mediated by MAPK activation of the protein kinase p90Rsk, which leads to inhibition of the APC. However, it is not known whether CSF-dependent metaphase arrest caused by p90Rsk involves components of the spindle assembly checkpoint.Results: xBub1 is present in resting oocytes and its protein level increases slightly during oocyte maturation and early embryogenesis. In Xenopus oocytes, Bub1 is localized to kinetochores during both meiosis I and meiosis II, and the electrophoretic mobility of Bub1 upon SDS-PAGE decreases during meiosis I, reflecting phosphorylation and activation of the enzyme. The activation of Bub1 can be induced in interphase egg extracts by selective stimulation of the MAPK pathway by c-Mos, a MAPKKK. In oocytes treated with the MEK1 inhibitor U0126, the MAPK pathway does not become activated, and Bub1 remains in its low-activity, unshifted form. Injection of a constitutively active target of MAPK, the protein kinase p90Rsk, restores the activation of Bub1 in the presence of U0126. Moreover, purified p90Rsk phosphorylates Bub1 in vitro and increases its protein kinase activity.Conclusions: Bub1, an upstream component of the kinetochore attachment checkpoint, is activated during meiosis in Xenopus in a MAPK-dependent manner. Moreover, a single substrate of MAPK, p90Rsk, is sufficient to activate Bub1 in vitro and in vivo. These results indicate that in vertebrate eggs, kinetochore attachment/spindle assembly checkpoint proteins, including Bub1, are downstream of p90Rsk and may be effectors of APC inhibition and CSF-dependent metaphase arrest by p90Rsk

    Regulation of the Aurora B Chromosome Passenger Protein Complex during Oocyte Maturation in Xenopus laevisâ–¿

    No full text
    The dynamics of the Aurora B protein kinase during Xenopus oocyte meiotic maturation were examined. Resting G2 oocytes express inactive Aurora B that is not associated with other subunits of the chromosome passenger complex (CPC). Activity increases near the time of germinal vesicle breakdown in progesterone-treated oocytes, and this increase is correlated with the synthesis of inner centromere protein (INCENP) and survivin, components of the CPC. Ablation of INCENP synthesis led to the failure of progesterone treatment to activate Aurora B, but biochemical progression through the meiosis I-to-II transition and arrest at metaphase II were not affected. At fertilization, Aurora B was deactivated in concert with the degradation of INCENP, and the levels of Aurora B kinase activity and INCENP oscillated in subsequent embryonic cell cycles. Prevention of the decrease in Aurora B activity at fertilization by expression of ectopic wild-type INCENP, but not kinase-dead Aurora B INCENP, blocked calcium-induced exit from metaphase arrest in egg extracts

    Undamaged DNA Transmits and Enhances DNA Damage Checkpoint Signals in Early Embryosâ–¿

    No full text
    In Xenopus laevis embryos, the midblastula transition (MBT) at the 12th cell division marks initiation of critical developmental events, including zygotic transcription and the abrupt inclusion of gap phases into the cell cycle. Interestingly, although an ionizing radiation-induced checkpoint response is absent in pre-MBT embryos, introduction of a threshold amount of undamaged plasmid or sperm DNA allows a DNA damage checkpoint response to be activated. We show here that undamaged threshold DNA directly participates in checkpoint signaling, as judged by several dynamic changes, including H2AX phosphorylation, ATM phosphorylation and loading onto chromatin, and Chk1/Chk2 phosphorylation and release from nuclear DNA. These responses on physically separate threshold DNA require γ-H2AX and are triggered by an ATM-dependent soluble signal initiated by damaged DNA. The signal persists in egg extracts even after damaged DNA is removed from the system, indicating that the absence of damaged DNA is not sufficient to end the checkpoint response. The results identify a novel mechanism by which undamaged DNA enhances checkpoint signaling and provide an example of how the transition to cell cycle checkpoint activation during development is accomplished by maternally programmed increases in the DNA-to-cytoplasm ratio

    Spindle Pole Regulation by a Discrete Eg5-Interacting Domain in TPX2

    Get PDF
    SummaryTargeting protein for Xklp2 (TPX2) activates the Ser/Thr kinase Aurora A in mitosis and targets it to the mitotic spindle [1, 2]. These effects on Aurora A are mediated by the N-terminal domain of TPX2, whereas a C-terminal fragment has been reported to affect microtubule nucleation [3]. Using the Xenopus system, we identified a novel role of TPX2 during mitosis. Injection of TPX2 or its C terminus (TPX2-CT) into blastomeres of two-cell embryos led to potent cleavage arrest. Despite cleavage arrest, TPX2-injected embryos biochemically undergo multiple rounds of DNA synthesis and mitosis, and arrested blastomeres have abnormal spindles, clustered centrosomes, and an apparent failure of cytokinesis. In Xenopus S3 cells, transfection of TPX2-FL causes spindle collapse, whereas TPX2-CT blocks pole segregation, resulting in apposing spindle poles with no evident displacement of Aurora A. Analysis of TPX2-CT deletion peptides revealed that only constructs able to interact with the class 5 kinesin-like motor protein Eg5 induce the spindle phenotypes. Importantly, injection of Eg5 into TPX2-CT-arrested blastomeres causes resumption of cleavage. These results define a discrete domain within the C terminus of TPX2 that exerts a novel Eg5-dependent function in spindle pole segregation

    Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase.

    No full text
    International audienceThe natural arrest of vertebrate unfertilized eggs in second meiotic metaphase results from the activity of cytostatic factor (CSF). The product of the c-mos(xe) proto-oncogene is thought to be a component of CSF and can induce metaphase arrest when injected into blastomeres of two-cell embryos. The c-Mos(xe) protein can directly activate the mitogen-activated protein kinase kinase (MAP kinase kinase) in vitro, leading to activation of MAP kinase. MAP kinase and c-Mos(xe) are active in unfertilized eggs and are rapidly inactivated after fertilization. Microinjection of thiophosphorylated MAP kinase into one blastomere of a two-cell embryo induced metaphase arrest similar to that induced by c-Mos(xe). However, only arrest with c-Mos(xe) was associated with activation of endogenous MAP kinase. These results indicate that active MAP kinase is a component of CSF in Xenopus and suggest that the CSF activity of c-Mos(xe) is mediated by MAP kinase
    corecore