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Bub1 is activated by the protein kinase p90Rsk during
Xenopus oocyte maturation
Markus S. Schwab*, B. Tibor Roberts†, Stefan D. Gross‡, Brian J. Tunquist,
Frédéric E. Taieb, Andrea L. Lewellyn and James L. Maller

Background: The kinetochore attachment (spindle assembly) checkpoint Address: Howard Hughes Medical Institute and
Department of Pharmacology, University ofarrests cells in metaphase to prevent exit from mitosis until all the
Colorado, School of Medicine, 4200 East Ninthchromosomes are aligned properly at the metaphase plate. The checkpoint
Ave., Denver, Colorado 80262, USA

operates by preventing activation of the anaphase-promoting complex (APC),
which triggers anaphase by degrading mitotic cyclins and other proteins. Correspondence: James L. Maller
This checkpoint is active during normal mitosis and upon experimental E-mail: jim.maller@uchsc.edu
disruption of the mitotic spindle. In yeast, the serine/threonine protein kinase

Present addresses: *CellZome GmbH,Bub1 and the WD-repeat protein Bub3 are elements of a signal
Meyerhofstr. 1, D-69117 Heidelberg, Germany.transduction cascade that regulates the kinetochore attachment checkpoint.
†Laboratory of Biochemistry and Genetics,In mammalian cells, activated MAPK is present on kinetochores during
NIDDK, NIH, Bethesda, Maryland 20892, USA.

mitosis and activity is upregulated by the spindle assembly checkpoint. In ‡Agouron Pharmaceuticals, La Jolla, California
vertebrate unfertilized eggs, a special form of meiotic metaphase arrest 92037, USA.
by cytostatic factor (CSF) is mediated by MAPK activation of the protein

Received: 13 November 2000kinase p90Rsk, which leads to inhibition of the APC. However, it is not
Revised: 22 December 2000known whether CSF-dependent metaphase arrest caused by p90Rsk involves
Accepted: 5 January 2001components of the spindle assembly checkpoint.

Published: 6 February 2001
Results: xBub1 is present in resting oocytes and its protein level increases
slightly during oocyte maturation and early embryogenesis. In Xenopus Current Biology 2001, 11:141–150
oocytes, Bub1 is localized to kinetochores during both meiosis I and meiosis II,
and the electrophoretic mobility of Bub1 upon SDS-PAGE decreases during 0960-9822/01/$ – see front matter

 2001 Elsevier Science Ltd. All rights reserved.meiosis I, reflecting phosphorylation and activation of the enzyme. The
activation of Bub1 can be induced in interphase egg extracts by selective
stimulation of the MAPK pathway by c-Mos, a MAPKKK. In oocytes treated
with the MEK1 inhibitor U0126, the MAPK pathway does not become
activated, and Bub1 remains in its low-activity, unshifted form. Injection of
a constitutively active target of MAPK, the protein kinase p90Rsk, restores
the activation of Bub1 in the presence of U0126. Moreover, purified p90Rsk

phosphorylates Bub1 in vitro and increases its protein kinase activity.

Conclusions: Bub1, an upstream component of the kinetochore attachment
checkpoint, is activated during meiosis in Xenopus in a MAPK-dependent
manner. Moreover, a single substrate of MAPK, p90Rsk, is sufficient to activate
Bub1 in vitro and in vivo. These results indicate that in vertebrate eggs,
kinetochore attachment/spindle assembly checkpoint proteins, including
Bub1, are downstream of p90Rsk and may be effectors of APC inhibition
and CSF-dependent metaphase arrest by p90Rsk.

Background by preventing activation of the anaphase-promoting com-
plex (APC) [6, 7]. The APC is an E3 ubiquitin ligaseRecent evidence from many laboratories has identified

the metaphase/anaphase transition in the cell cycle as a that targets mitotic cyclins and regulators of chromatid
cohesion for degradation by the proteosome pathway attarget of multiple checkpoint controls. Most extensively

studied has been the spindle assembly checkpoint, also the metaphase/anaphase transition [8]. Regulation of the
APC is complex. Early genetic screens in budding yeastknown as the kinetochore attachment checkpoint (for re-

view see [1]). This checkpoint is thought to measure identified seven genes, BUB1, 2, 3, (budding uninhibited
in benzimidazole) [9], MAD1, 2, 3 (mitotic arrest deficientmicrotubule tension or occupancy on kinetochores [2, 3],

and a single unattached kinetochore is sufficient to acti- [10]), and MPS1 (monopolar spindle) [11, 12] that function
in the checkpoint (for reviews see [13, 14]). Recently,vate the checkpoint [4, 5]. Substantial genetic and bio-

chemical evidence indicates that spindle assembly check- most of the homologs in higher eukaryotes have been
cloned. The Bub1 protein kinase is a crucial componentpoint activation blocks the metaphase/anaphase transition
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of the signaling cascade from unattached kinetochores and p90Rsk inhibit activity of the APC and thereby prevent
degradation of cyclin B [40].that prevents activation of the APC (for review see [8,

13, 14]). In yeast, dominant Bub1 alleles block anaphase
In this report, we define a link between the MAPK path-onset, and loss of function of Bub1 abrogates the spindle
way and a genetically defined component of the kineto-checkpoint [9, 15]. Bub1 and the kinetochore attachment
chore attachment checkpoint, the protein kinase Bub1.checkpoint become activated not only upon disruption of
Bub1 undergoes activation and a phosphorylation-depen-the mitotic spindle but also early in mitosis during every
dent mobility shift during oocyte maturation that requirescell cycle, which assures stable attachment of spindle mi-
the activity of the MAPK pathway. Furthermore, p90Rsk,crotubules to kinetochores and proper chromosome segre-
a downstream target of MAPK, directly phosphorylatesgation [16, 17]. Bub1 and Bub3 are thought to interact
Bub1 and increases its protein kinase activity in vitro.directly and are upstream in the pathway, whereas Mad1,

2, and 3 are more downstream in the signaling cascade
Results[15]. If kinetochores are not stably bound to microtubules,
Cloning of Xenopus Bub1Mad2, Bub1, and Bub3 localize to kinetochores, and Mad2
The Xenopus isoform of Bub1 (xBub1) was cloned by PCRinteracts physically with Cdc20 (p55CDC, fizzy), an acti-
from a l ZAPII Xenopus oocyte library as described invator of the APC [16, 18, 19]. Mad2 binding to fizzy
Materials and methods. The sequence contains an openprevents APC activation and thereby inhibits degradation
reading frame of 3408 nucleotides (1136 amino acids) andof chromatid cohesion regulators and cyclin B, halting exit
a 59 untranslated region (UTR) of 89 nucleotides withfrom mitosis [6, 7, 20–22]. Although it has been shown
stop codons upstream of the ATG in all reading frames.recently that Bub1 and Bub3 form a complex with Mad1
The 39 UTR consists of 313 nucleotides including a poly(A)[17], it is not clear how the signal from unattached kineto-
tail. Sequence comparison between the human and Xeno-chores is transmitted to MAD2 and the APC.
pus isoforms reveals 54% similarity over the whole protein
and 77% similarity in the kinase domain (Figure 1).In addition to Bub1, several other protein kinases are

implicated in activation of the APC. One example is polo-
like kinase, which localizes on kinetochores in metaphase Bub1 localizes to kinetochores in mitosis and meiosis

To study xBub1 localization during mitosis, we immuno-[23–25]. In Xenopus egg extracts, kinase-dead Plx1 blocks
activation of the APC [25, 26], and in mammalian cells, stained Xenopus A6 cells (data not shown) and embryos

(Figures 2a–c) with a polyclonal antibody against XenopusDNA damage in mitosis blocks APC activation in part by
deactivation of Plk [27]. Other work has implicated the Bub1. We observed Bub1 staining of kinetochores in mi-

totic prophase and metaphase in both A6 cells and em-MAPK pathway in the spindle assembly checkpoint. In
Xenopus egg extracts and in XTC cells, the ability of noco- bryos. No xBub1 staining was observed after metaphase

in cultured cell lines, whereas greatly reduced Bub1 im-dazole to cause metaphase arrest depends on the MAPK
pathway [28–30], and in mammalian cells, active MAPK munoreactivity was still evident on kinetochores of em-

bryonic cells in anaphase (Figure 2c). Since embryos be-enters the nucleus and localizes to spindle poles and ki-
netochores during mitosis despite low activity elsewhere fore the midblastula transition (MBT) are not able to

execute a kinetochore attachment checkpoint arrest ofin the cell [31, 32]. MAPK activity on kinetochores is high
in prophase and is reduced once attachment of microtu- the cell cycle in response to nocodazole [41, 42], we also

compared kinetochore localization of xBub1 in embryosbules to kinetochores is complete [31, 32]; it remains high
if spindles are disrupted by microtubule-depolymerizing before and after the MBT. In both cases, a similar cell

cycle–dependent localization of xBub1 to kinetochoresagents. Although it has been proposed that MAPK pro-
motes the spindle checkpoint by interfering with APC during early mitosis was observed (data not shown), indi-

cating that xBub1 localizes to kinetochores independentlyactivation [31], it is not known if, or how, MAPK is func-
tionally linked to proteins of the kinetochore attachment of the presence of a functioning checkpoint. To test

whether xBub1 is present at potential sites of checkpointcheckpoint such as Bub1 and 3; Mad1, 2, and 3; and fizzy.
control in meiosis, the localization of xBub1 during oocyte

During progesterone-induced Xenopus oocyte maturation, maturation was studied. In metaphase of both meiotic
the MAPK pathway is activated (for review see [33]). divisions, strong kinetochore staining was detected (Fig-
Oocytes go through two meiotic divisions and arrest with ure 2d,e).
an intact spindle in metaphase of meiosis II due to an
activity defined as cytostatic factor (CSF) [34]. The xBub1 becomes phosphorylated and activated during

oocyte maturationMAPK pathway is required for establishing meiotic arrest
in metaphase II by CSF [33, 35–37]. Recently, we and We examined the abundance of xBub1 protein during

oocyte maturation (Figure 3a) and early embryogenesisothers have shown that a single direct downstream target
of MAPK, p90Rsk, mediates CSF arrest in oocytes [38, 39] (data not shown). Bub1 was present in resting oocytes

and the level of Bub1 protein increased slightly duringFurthermore, in maturing oocytes, the MAPK pathway
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Figure 1

Sequence alignment of Xenopus, human, and yeast Bub1. The amino domain of xBub1 in the C terminus of the protein (aa 838–1136)
acid sequences of Xenopus (X.l.), human (H.s.), S. cerevisiae (S.c.), shows the highest degree of conservation. The sequence has been
and S. pombe (S.p.) Bub1 are shown. Identical amino acids are deposited in GenBank under accession number AF119789.
underlayed with black; similar amino acids are in gray. The kinase

oocyte maturation, generally in the range of 2-fold (Figure shift during maturation is due to phosphorylation. The
phosphorylation of xBub1 occurred slightly before GVBD3a, upper panel). During oocyte maturation, we observed

a decrease of Bub1 electrophoretic mobility upon SDS- and persisted throughout maturation to arrest at meta-
PAGE, indicative of posttranslational modification (Fig- phase of meiosis II (Figure 3a). At the same time that
ure 3a, compare 3 and 4 hr post-progesterone). The shift Bub1 underwent phosphorylation, Mos protein started
was more pronounced if the mobility of the C-terminal to accumulate (Figure 3a, second panel), which led to
half of Bub1 encoding the kinase domain was compared in activation of the MAPK pathway, as detected with an
resting oocytes and those in M-phase that had undergone antibody specific for the active phosphorylated form of
germinal vesicle breakdown (GVBD) (Figure 3b, lanes 1 MAPK (Figure 3a, third panel). Also at the same time,
and 2). In S. cerevisiae, Bub1 becomes transiently phos- cyclinB/Cdc2 became activated, shown as a loss of inhibi-
phorylated during mitosis or upon activation of the kineto- tory phosphorylation on Tyr15 (Figure 3a, lower panel),
chore assembly checkpoint with nocodazole, causing an which correlates with an increase in histone H1 kinase
electrophoretic shift that can be reversed by treatment activity.
with l phosphatase [17]. Likewise, the shift of xBub1
was reversed by l phosphatase (Figure 3b), indicating the To determine whether the phosphorylation and shift of
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Figure 2

Immunolocalization of Bub1 in mitosis and meiosis. (a–c) Bub1 and a-tubulin staining of a meiosis I spindle (45 min after GVBD)
Immunofluorescent staining of Bub1 and a-tubulin in stage 13 is shown in (d). A meiosis II spindle (120 min after GVBD) is shown
Xenopus embryos; Bub1 staining is shown in red, a-tubulin is in green. in (e). DNA staining with Sytox green is in blue, a-tubulin is in green,
(a) Bub1 staining of kinetochores in early prophase. (b) Metaphase. and Bub1 is in red.
(c) Anaphase. (d,e) Bub1 and a-tubulin immunoreactivity in oocytes.

Bub1 reflects activation of the enzyme, we measured the activated (Figure 3), and since activation of the spindle
kinase activity of immunoprecipitated endogenous Bub1 assembly checkpoint in egg extracts [28, 29] and XTC
using histone H3 as a substrate (Figure 3c). Activity of cells [30] is MAPK dependent, we reasoned that the
Bub1 increased several-fold between stageVI and GVBD MAPK pathway might be responsible for phosphorylation
as shown both by increased autophosphorylation and by of xBub1, particularly since in mammalian cells MAPK
phosphorylation of histone H3. The increase in Bub1 activity on kinetochores declines once spindle assembly
activity at GVBD appeared to be greater than could be is complete and is increased during spindle checkpoint
accounted for by the increase in level of Bub1. This result activation [31, 32]. We added 35S-labeled Bub1 protein,
suggests that the electrophoretic shift of Bub1 reflects produced in a reticulocyte lysate, to interphase egg ex-
phosphorylation-dependent activation. tracts and monitored the time course of Bub1 phosphory-

lation by electrophoretic shift. In the control extract, exog-
Since Bub1 has been reported to be in a complex with enous Bub1 did not shift, the MAPK pathway was not
Bub3 in other systems [43], it was important to determine activated, and cyclin B/Cdc2 histone H1 kinase activity
whether a physical interaction also exists in Xenopus oo- remained low (Figure 5). When 50 ng bacterially produced
cytes. Therefore, we cloned xBub3 by PCR as described Mos protein, an oocyte MAPKKK, was added, active
in Materials and methods, and we expressed in oocytes MAPK reactivity was detected. p90Rsk, a downstream tar-
myc-tagged xBub3 either alone or with untagged xBub1. get of MAPK, underwent a mobility shift, which is known
Expressed and endogenous xBub1 were precipitated with to reflect activation [44], at the same time, and xBub1
affinity-purified Bub1 antibodies, and the immunoprecip- shifted into its high activity, phosphorylated form. U0126,
itates were Western blotted with anti-myc antibody to a potent and specific inhibitor of MEK1 [40, 45], pre-
detect coprecipitated Bub3. Myc-tagged xBub3 was re- vented activation of the MAPK pathway by Mos protein
covered in a complex with both ectopic and endogenous and inhibited the shift of radiolabeled xBub1. These re-
Bub1 (Figure 4). We conclude that, as previously reported sults indicate that Bub1 phosphorylation and activation
for yeast and human cells, Bub1 exists as a complex with are a downstream consequence of MAPK activation.
Bub3.

Previous results have shown that in oocytes, a downstreamThe MAPK pathway is responsible for activation of Bub1
target of MAPK, p90Rsk, is the sole mediator of severalSince Bub1 becomes phosphorylated during oocyte matu-

ration at the time when the MAPK pathway becomes important functions of the MAPK pathway. These include



Research Paper Bub1 activation by p90Rsk Schwab et al. 145

Figure 3 Figure 4

Bub1 and Bub3 exist in a complex. Bub1 was immunoprecipitated
from uninjected oocytes, from oocytes injected with mRNA encoding
myc-tagged Bub3 alone, or injected with Bub1 or Bub1 KM
(catalytically inactive Bub1) mRNA together with myc-tagged Bub3
mRNA, as indicated. Bub3 was detected by immunoblotting with a
monoclonal anti-myc antibody (clone 9E10). Bub3 co-precipitates
with endogenous Bub1 and overexpressed wild type or catalytically
inactive Bub1. No myc-tagged Bub3 was detectable in an
immunoprecipitate using preimmune serum (lower panel).

generation of CSF activity for metaphase arrest at the end
of meiosis II [38, 39] and inhibition of APC-mediated

(a) Phosphorylation of Bub1 during oocyte maturation. Bub1
cyclin B degradation between meiosis I and II [40]. Toprotein displays reduced electrophoretic mobility indicative of
investigate the role of p90Rsk in mediating MAPK-depen-phosphorylation (upper panel) at the same time that the MAPK

pathway becomes activated, as shown by the accumulation of Mos dent Bub1 activation, oocytes were injected with mRNA
protein (second panel) and the appearance of phospho-MAPK encoding a constitutively active form of p90Rsk (CA-RSK),reactivity (third panel), which reflects activation of the enzyme.

which does not require MAPK for activity [39, 40], andDisappearance of inhibitory phosphorylation of Cdc2 on Tyr15
(lower panel) indicates that activation of MPF also correlates with treated with progesterone. As reported before [40], CA-
phosphorylation of Bub1. The apparent slower mobility of Bub1 in RSK was able to prevent cyclin B degradation by the APC
St VI oocytes and 1–2 hr post-progesterone was an artefact of a

in the presence of U0126. In addition, activation of Bub1“smile” in this gel and was not seen in other experiments [cf. (b)].
(b) The shift of Bub1 is due to phosphorylation. Oocytes were injected was evident in CA-RSK-expressing oocytes even when
with mRNA encoding the FLAG-tagged C-terminal half of Bub1 U0126 prevented activation of the MAPK pathway (Fig-
(FLAG-Bub1 CT), which contains most of the phosphorylation sites.

ure 6). Thus, activation of Bub1 might be due to eitherAfter overnight incubation, oocytes were treated or not with
a direct interaction with p90Rsk or through an as yet uniden-progesterone, lysed after GVBD, and supernatants incubated with

400 U/oocyte of l phosphatase (lane 3) or buffer (lanes 1 and 2) tified kinase downstream of p90Rsk.
for 30 min. Then SDS-PAGE sample buffer was added and Bub1
electrophoretic mobility was assessed by Western blotting with
anti-FLAG antibody: lane 1, extract from control, St VI oocytes;
lane 2, extract from oocytes at GVBD; lane 3, extract of oocytes

histone H3 as an exogenous substrate as described in Materials andat GVBD treated with phosphatase. (c) Endogenous Bub1 kinase
methods. Immunoprecipitation assays with beads only (no antibody)activity in oocytes. The kinase activity of endogenous Bub1
are shown in lanes 1 and 3 as controls.immunoprecipitated from stage VI or GVBD oocytes (lanes 2 and

4) was measured by autophosphorylation (upper panel) or with
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Figure 5

Phosphorylation of Bub1 is dependent on the
MAPK pathway. CSF extracts were prepared
as described [49, 50] and released from
metaphase arrest by addition of 0.6 mM
CaCl2. To prevent reactivation of MPF, 50 mg/
ml cycloheximide was added with the CaCl2.
At 45 min after the addition of Ca21 and
cycloheximide, 35S-labeled Bub1 protein was
added, indicated as the 0 min time point. The
electrophoretic mobility shift of 35S-labeled
Bub1, which is indicative of phosphorylation,
was followed over a period of 90 min in
control extracts, in extracts in which the MAPK
pathway was activated by the addition of 50
ng Mos protein, and in extracts supplemented
with Mos protein and the MEK 1 inhibitor
U0126 (50 mM) (upper panel). The activation
of MAPK is shown in panel 2 by use of a
phosphospecific antibody that detects only
active MAPK, and in panel 3 the activity of polyclonal antibody against p90Rsk1 Total histone H1 kinase activity is shown in
p90Rsk is monitored by a shift known to reflect [Santa Cruz]) recognizes less well the the lower panel.
activation [44]. The antibody used (rabbit phosphorylated and activated form of p90Rsk.

p90Rsk phosphorylates and activates Bub1 quired for exit from mitosis. These components and this
pathway appear to be conserved in Xenopus and otherTo determine if p90Rsk is a direct activator of Bub1, we

used His6-Bub1 protein purified from Sf9 cells as a sub- eukaryotes [1]. However, biochemical studies in higher
eukaryotes have implicated MAPK as another elementstrate. Bub1 was incubated with p90Rsk or various other

protein kinases active in M phase in oocytes (MPF, that controls exit from mitosis in a variety of cell types.
In particular, abundant evidence in Xenopus egg extractsMAPK, Plx1, MEKDD) in the presence of [g-32P]ATP.

Several of these kinases were able to phosphorylate Bub1 indicates that MAPK activity is required for execution of
the checkpoint. Although intact eggs and early embryos(Figure 7a). This is not surprising, inasmuch as a 160

kDa protein such as Bub1 contains consensus motifs for have insufficient DNA for checkpoint control by nocoda-
zole addition, it can be obtained experimentally in eggphosphorylation by multiple kinases. To determine if any

of these phosphorylation events regulate Bub1 activity, extracts by addition of a large number of nuclei prior
to treatment with nocodazole [28, 29], and under theseBub1 purified from Sf9 cells on Talon beads was first

incubated with each of the above mentioned kinases in conditions the MAPK pathway is activated. The addition
of MAPK phosphatase to egg extracts in which the kineto-the presence of cold ATP to allow phosphorylation of

Bub1. Subsequently, the activating kinases were re- chore attachment checkpoint is activated abrogates the
checkpoint [28], as does immunodepletion of MAPK [29].moved, and Bub1 activity was assayed with histone H3

as substrate. Only p90Rsk activated Bub1WT significantly, In addition, treatment of the extract with PD98059, an
inhibitor of MAPK kinase [46], compromises establish-whereas a kinase-inactive form of Bub1 (Bub1KM) did

not become activated (Figure 7b). Also, incubation of ment of the checkpoint. A similar role for MAPK is
thought to operate in somatic cells, inasmuch as activatedxBub1WT with kinase-inactive p90Rsk did not result in

activation of Bub1 activity toward histone H3 (Figure MAPK is present on kinetochores at metaphase [31, 32],
and injection of MAPK phosphatase into tissue culture7c). Treatment with l phosphatase removed all radiolabel

from Bub1 after phosphorylation by Rsk (data not shown) cells blocks checkpoint activation [30]. Moreover, it has
been reported that MAPK activity on kinetochores is re-and deactivated the enzyme as judged by phosphorylation

of histone H3 (Figure 7c). These results demonstrate that duced once spindle assembly is complete but remains
high if the spindle checkpoint is activated by microtubule-p90RSK directly activates Bub1 by phosphorylation.
depolymerizing agents [31, 32]. At anaphase, no active
MAPK can be detected on kinetochores.Discussion

In this study, we focused on the relationship of the MAPK
pathway, which regulates metaphase arrest by CSF in In meiosis II, vertebrate oocytes undergo a special form

of metaphase arrest caused by CSF, an activity that is asvertebrate eggs, to the kinetochore attachment/spindle
assembly checkpoint. In budding yeast, this checkpoint yet uncharacterized on the molecular level. Although CSF

activity normally disappears after fertilization [34], CSF-has been defined as a genetic hierarchy of Bub and Mad
proteins that regulate APC activation [1], an event re- dependent metaphase arrest can be induced in cells after
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Figure 6 Figure 7

CA-Rsk restores phosphorylation of Bub1 in U0126-treated oocytes.
Uninjected oocytes and oocytes injected with CA-Rsk mRNA [39,
40] were incubated overnight at 188C. The next day U0126 was added
1 hr before the addition of progesterone to induce oocyte maturation.
Untreated and U0126-treated oocytes were collected at the time
corresponding to meiosis II (MII), extracted, and immunoblotted for
Bub1 (upper panel, lanes 1–4). U0126 prevented phosphorylation of
Bub1 at meiosis II (MII, lanes 1 and 2, upper panel). Expression of
constitutively active Rsk (CA-Rsk) reversed the effect of U0126, and
full phosphorylation of Bub1 was evident (lanes 3 and 4, upper
panel). A Western blot showing cyclin B2 protein reflects the cell
cycle phase (lower panel), with CA-Rsk preventing APC-mediated
cyclin B degradation and entry into S phase [40] after GVBD in the
presence of U0126 (compare lanes 2 and 4).

fertilization by Mos, MEKDD, thiophosphorylated MAPK,
or a constitutively active form of p90Rsk, even though a
nocodozole-sensitive checkpoint is absent [35–37, 39]. Phosphorylation and activation of Bub1 by p90Rsk. (a) Bub1 purified
Moreover, antibody depletion or inactivation of either from Sf9 cells was phosphorylated with various kinases in the

presence of [g-32P]ATP for 30 min at 308C. Proteins in the reactionMAPK or p90Rsk from extracts removes CSF activity [38,
mixture were separated by SDS-PAGE and analyzed by47]. The MAPK pathway and p90Rsk have been shown to
autoradiography. MEKDD, constitutively-active MAPK kinase; MPF,directly inhibit APC-mediated cyclin B degradation in cyclin B/Cdc2. (b) Bub1wt (upper panel) and Bub1 KM (lower

meiosis II [40], suggesting CSF arrest involves APC inhi- panel) bound to beads were phosphorylated for 30 min at 308C with
the same kinases as in (a), except that unlabeled ATP was used.bition. In oocytes treated with UO126 to remove MAPK
The Bub1-containing beads were washed as described in Materialactivity, Cdc27, a component of the APC, fails to undergo
and methods, and Bub1 kinase activity was measured bya hypershift that correlates with low APC activity. This incorporation of radiolabel into histone H3. (c) Bub1 activation

results in increased cyclin B degradation, and a failure to reactions were carried out as in (b) with the indicated combinations,
except that after the activation reaction, beads either were or werereaccumulate MPF in meiosis II (Figure 6; [40]).
not treated with l phosphatase (as indicated ) before assay of
histone H3 kinase activity, as described in Materials and methods.Our results establish a link between the MAPK pathway

and the protein kinase Bub1, a genetically identified ele-
ment of the spindle assembly checkpoint. Bub1 under-
goes a phosphorylation-dependent mobility shift corre- activation even in the presence of UO126. Moreover, in

vitro kinase assays using Bub1 as a substrate clearlysponding to activation of the enzyme shortly before
GVBD as a consequence of activation of the MAPK path- showed that p90Rsk directly phosphorylates Bub1 and in-

creases its activity in vitro, indicating that Bub1 is a directway, and it remains in this activated form throughout
meiosis I and II. A hyperactive form of p90Rsk caused downstream target of p90Rsk.
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Figure 8

The pathway of CSF arrest at metaphase. The
model proposes the activation of Bub1 as
the target of the Mos/MAPK/Rsk pathway for
inhibition of the APC and CSF arrest at
metaphase. The action of Bub1 to promote
metaphase arrest could involve established
interactions with Mad proteins and Cdc20
(fizzy) to inhibit APC activity or, alternatively,
could be mediated by interaction of Bub1 with
other components in a novel pathway
designated “CSF” that would also result in
APC inhibition and metaphase arrest.

Although some of the protein components of the spindle Materials and methods
Cloning of Xenopus Bub1 and Bub3assembly checkpoint, such as Mad1, 2, 3 and Fizzy, have
The Xenopus homolog of Bub1 was cloned by PCR using the degeneratepreviously been reported to be present in Xenopus eggs,
primers 59-CAYGGIGAYITIAARCCIGA-39 and 59-SCIGCIAIICCRWARit has been unclear what role, if any, they play in the TARTC-39, which were designed against conserved regions in the kinase

cell cycle prior to appearance of the nocodazole-sensitive domain of the yeast [41] and mouse [14] Bub1 proteins. A 270 bp
fragment obtained by PCR was used to screen a l ZAPII Xenopus oocytecheckpoint following the midblastula transition [41, 42].
library. Among seven isolated positive cDNA clones, one contained theHowever, since the kinetochore attachment checkpoint
full open reading frame of Bub1. This sequence has been deposited inprevents activation of the APC, it is possible that Bub1, GenBank under accession number AF119789. A portion of the Xenopus

as a target of p90Rsk required for generation of CSF activity Bub3 homolog was amplified by PCR from the same library using the
degenerate primers 59-TGGGAYCARACIGTIAARCTITGGG-39 and(Figure 8), might act through known kinetochore attach-
59-TCIACIGCIACYCTICCYTC-39, which were designed against con-ment checkpoint components to prevent meiotic APC
served regions in the human and Drosophila homologs. The 271 bpactivation via targeting of Mad2 to Cdc20 (fizzy). In so- fragment was then used to probe the library, and a full-length clone was

matic cells, evidence indicates that MAPK activity in mi- obtained. Its sequence, which is almost identical to the recently published
xBub3 homolog described by Goto and Kinoshita [48], has been depos-tosis is restricted to spindle poles and kinetochores, and
ited in GenBank under accession number AF119790activity on kinetochores is reduced after completion of

microtubule attachment [31, 32]. In the case of oocytes,
Plasmids and constructshowever, Mos expression ensures that very high MAPK/ The open reading frame of xBub1 was amplified by PCR with primers

Rsk activity is present throughout the cell in meiosis II 59-GACGACGACAAGATGGATCTACAGAGTCAGGCA-39 and 59-GAG
GAGAAGCCCGGTTTTGCGGGAAGGCTTGTTCTC-39. The PCR prod-despite the presence of a complete spindle; this pathway
uct was cloned into pCS21 or pCS21Myc-tag (MT) vectors modifiedmight activate the checkpoint to block cell cycle progres-
for ligation-independent cloning by insertion of the annealed primerssion even though kinetochores are fully attached to an 59-AATTCTGACGACGACAAGAGCCCGGGCTTCTCCTCAC-39 and

intact spindle and cell cycle progression is insensitive to 59-TCGAGTGAGGAGAAGCCCGGGCTCTTGTCGTCGTCAG-39 into
the EcoRI/XhoI restriction site of pCS21 or pCS21MT, resulting innocodazole. Alternatively, Bub1 might exert its functions
vectors pCSLIC and pCSMTLIC. An additional BseRI restriction site inin a novel manner to generate a unique “CSF” pathway
pCS vectors was mutated by site-directed mutagenesis. PCSLICBub1 orfor APC inhibition (Figure 8). pCSMTLICBub1 were used for in vitro transcription, pBac2cpLICBub1
for baculovirus expression of Bub1, and pT7Blue2LIC Bub1 for in vitro
transcription/translation. The kinase inactive mutant of Bub1 was createdConclusions
by site-directed mutagenesis according to the Quick Change method

Bub1 becomes activated during every cell cycle before (Promega). Lysines 871 and 874 were mutated to methionines in the ATP
all kinetochores are properly attached to spindle microtu- binding site of the Bub1 kinase domain using primers 59-CAGAAGTTTAT

ATTAATGGTTCAAATGCCGGCCAAGCCCTGGGAG-39 and 59-CTCbules and after disruption of mitotic spindles with micro-
CCAGGGCTTGGCCGGCATTTGAACCATTAATATAAACTTCTG-39.tubule-destabilizing drugs. We have shown that xBub1 is

also activated during the CSF-induced arrest of meiosis xBub3 was cloned into pCSMTLIC using the strategy described above
II and that the MAPK pathway mediates this activation for Bub1. The primers 59-GACGACGACAAGATGACCGGGTCAAAT

GAG-39 and 59-GAGGAGAAGCCCGGTCACTTGGGCTTTGTC-39through p90Rsk, which directly phosphorylates and acti-
were used to amplify xBub3. For some experiments (Figure 3c), thevates Bub1 in vitro. Thus, both inhibition of cyclin B
C-terminal half of Bub1 (amino acids 569–1136) was expressed as a

degradation at the meiosis I to II transition and metaphase FLAG-tagged fusion construct in pCSLIC for in vitro transcription.
arrest by CSF may be mediated in part by p90Rsk-depen-
dent phosphorylation and activation of Bub1. These find- RNA production and injection of oocytes

Bub1 and Bub3 mRNA were produced from NotI-linearized pCSLIC-ings also provide a molecular mechanism for the proposal
Bub1, pCSMTLIC Bub1, or pCSMTLICBub3 plasmids using the SP6[31] that active MAPK on kinetochores in many somatic
mMessage mMachine kit (Ambion). mRNA (30–50 ng) in 30–50 nl water

cell types promotes the spindle assembly checkpoint by was injected into stage VI oocytes. Oocytes were allowed to express
protein overnight at 188C. To obtain oocytes that had undergone GVBD,interfering with APC activation.
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10 mg/ml progesterone was added the next morning to induce matura- Immunofluorescence
tion. Oocytes were frozen at the desired time points and kept at 2808C Embryos and oocytes were fixed in 100% methanol for 2 hr at room
until assay. temperature and then transferred into 20% DMSO in methanol and

incubated overnight at 2208C. Specimens were then rehydrated,
bleached with 10% hydrogen peroxide in 50 mM Tris-HCl (pH 8) and

Antibodies and Western blotting preblocked with 5% BSA in TBS, 0.1% Triton X-100 for 3–4 hr at
The antibody against xBub1 was produced by immunization of rabbits room temperature. Embryos and oocytes were incubated with primary
with bacterially produced His6-tagged polypeptides containing amino antibodies in 5% BSA in TBS, 0.1% Triton X-100 overnight at room
acids 115–407 and 466–965 of Bub1. Serum was purified by affinity temperature, followed by five washes with TBS, 0.1% Triton X-100 within
chromatography on a resin coupled to the polypeptides used for immuni- 8 hr. Secondary antibodies (goat anti-rabbit-Cy3, goat anti-mouse Cy5
zation. For SDS-PAGE and Western blotting, oocytes and embryos were

[Jackson], and goat anti-mouse Alexa 488 [Molecular Probes]) werelysed in EB (50 mM Tris-HCl [pH 7.4], 80 mM b-glycerophosphate, 20
diluted in 5% BSA in TBS, 0.1% Triton and incubated with oocytes andmM EDTA, 1 mM DTT, 3mM microcystin LR, 0.2% Triton X-100) and
embryos for at least overnight at room temperature. After five washescentrifuged at 10,000 3 g for 5 min. In general, extract supernatant
with TBS, 0.1% Triton the specimens were rinsed once with 0.53 TBS,corresponding to 1 oocyte was loaded per lane. For Bub1 Western
followed by overnight incubation with Sytox green (Molecular Probes)blots, the proteins on the gels were transferred to nitrocellulose by wet
1:10 000 in 0.53 TBS. Embryos and oocytes were washed once withtransfer for 1 hr at 100V (transfer buffer: 25 mM Tris, 192 mM glycine,
0.53 TBS for 30 min before dehydration with increasing percentages0.005% SDS, 10% methanol). The membrane was blocked with 10%
of methanol. After three changes of 100% methanol, the oocytes anddry milk in TBS, 0.1% NP-40 for 30 min. Incubation with affinity-purified
embryos were cleared with Murray’s solution (benzylbenzoate:benzylal-Bub1 antibody was overnight at 48C, followed by three washes with
cohol 2:1) and mounted onto slides. The specimens were analyzed withTBS 0.1% NP-40, 500 mM NaCl. Secondary antibodies (goat anti-rabbit-
a Nikon PCM 2000 confocal microscope.HRP conjugate [Jackson]) were used at 1:20000 in TBS containing 0.1%

NP-40. After five washes with TBS containing 0.1% NP-40, 500 mM
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